Содержание

Формулы тригонометрии

Формулы тригонометрии (тригонометрические формулы) или тригонометрические тождества описывают зависимости между синусом, косинусом, тангенсом и котангенсом и применяются при решении математических задач.

Ниже указаны основные тригонометрические тождества (равенства), формулы понижения степени, формулы двойного угла, косинус двойного угла, синус двойного угла, а также другие формулы. Дополнительно приведены значения тригонометрических функций для наиболее распространённых углов.


Основные тождества

… Подготовка формул …

Формулы двойного угла

… Подготовка формул …

Формулы тройного угла

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Формулы половинного аргумента

Формулы понижения степени
половинного аргумента

… Подготовка формул …

Формулы сложения

… Подготовка формул …

Формулы вычитания

… Подготовка формул …

Формулы преобразования суммы
в формулы произведения

… Подготовка формул …

Формулы преобразования разности
в формулы произведения

… Подготовка формул …

Формулы преобразования суммы

… Подготовка формул …

Формулы преобразования произведения
в формулы суммы и разности

… Подготовка формул …

Формулы преобразования произведения
функций в степени

… Подготовка формул …

Формулы понижения степени

… Подготовка формул …

Универсальная
тригонометрическая подстановка

… Подготовка формул …

Значения тригонометрических функций

α 0
α° 30° 45° 60° 90° 120° 135° 150°
180°
210° 225° 240° 270° 300° 315° 330° 360°
sin α 0 1 0 −1 0
cos α 1 0 −1 0 1
tg α 0 1 −1 0 1 −1 0
ctg α 1 0 −1 1 0 −1

Теория

Тригонометрия – раздел математики, изучающий зависимости углов и сторон треугольников, которые выражены функциями, называемыми тригонометрическими.

Функция – это правило, описывающее зависимость одной величины от другой.

Тождество – это равенство, справедливое при любых значениях, входящих в него переменных


Скачать тригонометрические формулы

Вы можете скачать тригонометрические формулы в виде картинки:

Тригонометрия для чайников. Урок1. Тригонометрия с нуля

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

 

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

 

Синус угла – отношение противолежащего катета к гипотенузе.

sinα=Противолежащий катетгипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cosα=Прилежащий катетгипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tgα=Противолежащий катетПрилежащий катет

Котангенс угла

– отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctgα=Прилежащий катетПротиволежащий катет

 

Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:

Прямоугольный треугольник

sin∠A=CBAB

cos∠A=ACAB

tg∠A=sin∠Acos∠A=CBAC

ctg∠A=cos∠Asin∠A=ACCB

sin∠B=ACAB

cos∠B=BCAB

tg∠B=sin∠Bcos∠B=ACCB

ctg∠B=cos∠Bsin∠B=CBAC

 

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. 

Такая окружность пересекает ось х в точках (−1;0) и (1;0), ось y в точках (0;−1) и (0;1)

На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами (1;0), – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠SOA, обозначим его за α. Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠SOA=α=∪SA.

Тригонометрический круг

 

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).

Синус и косинус на тригонометрическом круге

 

Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.

Рассмотрим прямоугольный треугольник AOB:

cosα=OBOA=OB1=OB

sinα=ABOA=AB1=AB

Поскольку OCAB – прямоугольник, AB=CO.

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

 

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90°:

Тригонометрический круг, тупой угол

 

Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x.Косинус тупого угла отрицательный.

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0° до 180°. Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.  (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0°,30°,45°,60°,90°,120°,135°,150°,180°. Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.

Тригонометрический круг, значения углов

 

Координата по оси x – косинус угла, координата по оси y – синус угла.

Пример:

cos150°=−32

sin150°=12

 

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.

 

sin2α+cos2α=1

Данное тождество – теорема Пифагора в прямоугольном треугольнике OAB:

Основное тригонометрическое тождество, тригонометрический круг

 

AB2+OB2=OA2

sin2α+cos2α=R2

sin2α+cos2α=1

 

30° 45° 60° 90°
sinα 0 12 22 32 1
cosα 1 32 22 12 0
tgα 0 33 1 3 нет
ctgα нет 3 1 33 0

 

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

 

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

Тригонометрический круг, формулы приведения

можно заметить, что:

sin180°=sin(180°−0°)=sin0°

sin150°=sin(180°−30°)=sin30°

sin135°=sin(180°−45°)=sin45°

sin120°=sin(180°−60°)=sin60°

 

cos180°=cos(180°−0°)=−cos0°

cos150°=cos(180°−30°)=−cos30°

cos135°=cos(180°−45°)=−cos45°

cos120°=cos(180°−60°)=−cos60°

 

Рассмотрим тупой угол β:

Смежные углы

 

Для произвольного тупого угла β=180°−α всегда будут справедливы следующие равенства:

sin(180°−α)=sinα

cos(180°−α)=−cosα

tg(180°−α)=−tgα

ctg(180°−α)=−ctgα

 

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

Треугольник ABC

 

asin∠A=bsin∠B=csin∠C

 

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

Треугольник ABC, описанная окружность радиуса R

 

asin∠A=bsin∠B=csin∠C=2R

 

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Треугольник ABC

 

a2=b2+c2−2bc⋅cos∠A

b2=a2+c2−2ac⋅cos∠B

c2=a2+b2−2ab⋅cos∠C

 

Модуль геометрия: задания, связанные с тригонометрией.

 

Скачать домашнее задание к уроку 1.

 

Формулы геометрии

     
  Главная > Учебные материалы > Математика:  Формулы геометрии  
   
   
 

    1.Признаки параллельности прямых.
    2.Признаки равенства треугольников.
    3.Теорема Пифагора.
    4.Радиус вписанной и описанной окружностей правильных многоугольников.
    5.Теорема синусов. Теорема косинусов.
    6.Радиус вписанной и описанной окружностей треугольника.

 

 
     
1 2 3 4 5 6 7 8
     


Признаки параллельности прямых

 
   
 

 

Признаки равенства треугольников

 
   
 

 

Теорема Пифагора

 
   
 

Рассчитать стороны прямоугольного треугольника

Катет a      Катет b                    Гипотенуза c =    

 

 
  Гипотенуза c      Катет a                    Катет b =      
     
   
 
 

 

Радиус вписанной и описанной окружностей правильных многоугольников

 
 
   
     
 

Рассчитать радиус вписанной и описанной окружностей

Сторона a     Число углов n          Радиус R =        Радиус r =    
 
     
 

 

Теорема синусов

 
   
 

Рассчитать сторону треугольника

Сторона а    sin (α= °)    sin (β= °)     Сторона b =    

Рассчитать угол треугольника

Сторона а    sin (α= °)    Сторона b       Угол β =     °

 

 
     
     
 

Теорема косинусов

 
   
 

Рассчитать сторону треугольника

Сторона b    Сторона с    cos (α= °)     Сторона a =    

Рассчитать угол треугольника

Сторона а     Сторона b     Сторона c       Угол α =     °
 
     
   

Радиус вписанной и описанной окружностей

 
   
     
 

Рассчитать радиус описанной и вписанной окружности

Сторона а     Сторона b     Сторона c

       

Площадь S =        Радиус R =        Радиус r =    

 
     

 
1 2 3 4 5 6 7 8
 
     
 

Теория по геометрии 7-9 класс

Виды углов:

· острый угол – от 0 до 90 градусов;

· прямой угол – равен 90 градусам;

· тупой угол – от 90 до 180 градусов;

· развернутый угол (прямая) – равен 180 градусам.

Смежные углы – два угла, у которых одна сторона общая, а две другие являются продолжением друг друга.

Свойство смежных углов:

· сумма смежных углов равна 180 градусам.

Вертикальные углы – два угла, у которых стороны являются продолжением друг друга.

Свойство вертикальных углов:

· вертикальные углы равны.

Перпендикулярные прямые – прямые пересекающиеся под углом 90 градусов.

Перпендикуляр – отрезок, проведенный из точки к прямой под углом 90 градусов.

Теорема о перпендикуляре: из точки, не лежащей на прямой можно провести перпендикуляр к этой прямой и при том только один.

Периметр многоугольника – сумма длин всех его сторон.

Треугольник – это геометрическая фигура, состоящая из трех сторон и трех углов.

Виды треугольников:

· остроугольный треугольник – все три угла острые;

· прямоугольный треугольник – один угол прямой и два угла острые;

· тупоугольный треугольник – один угол тупой и два угла острые.

Равные треугольники – треугольники, которые можно совместить наложением.

Свойства равных треугольников:

· если два треугольника равны, то их элементы (углы и стороны) попарно равны;

· в равных треугольниках напротив равных сторон лежат равные углы и наоборот, напротив равных углов лежат равные стороны.

Признаки равенства треугольников:

1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны;

2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны;

3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Биссектриса – отрезок, выходящий из вершины треугольника к противоположной стороне и делящий угол пополам.

Медиана – отрезок, выходящий из вершины треугольника к противоположной стороне и делящий эту сторону пополам.

Высота – отрезок, выходящий из вершины треугольника к прямой, содержащей противоположную сторону, под углом 90 градусов.

Равнобедренный треугольник – треугольник, у которого две стороны равны, а третья является основанием.

Свойства равнобедренного треугольника:

· углы при основании равны;

· биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Равносторонний треугольник – треугольник, у которого все стороны равны.

Свойства равностороннего треугольника:

· углы равны по 60 градусов;

· биссектриса равностороннего треугольника, проведенная к любой стороне, является медианой и высотой.

Параллельные прямые – прямые, которые не пересекаются.

Секущая – прямая, пересекающая параллельные прямые.

Виды углов, образованных при пересечении параллельных прямых секущей:

· накрест-лежащие;

· соответственные;

· односторонние.

Свойства параллельных прямых:

· при пересечении параллельных прямых секущей накрест-лежащие углы равны;

· при пересечении параллельных прямых секущей соответственные углы равны;

· при пересечении параллельных прямых секущей сумма односторонних углов равна 180 градусам.

Признаки параллельности прямых:

· если при пересечении двух прямых секущей накрест-лежащие углы равны, то прямые параллельны;

· если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны;

· если при пересечении двух прямых секущей сумма односторонних углов равна 180 градусам, то прямые параллельны.

Аксиома о параллельных прямых: через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и при том только одну.

Следствия из аксиомы:

· если секущая пересекает одну из параллельных прямых, то она пересечет и вторую параллельную прямую;

· если каждая из двух прямых параллельна третьей, то они параллельны между собой.

Теорема о сумме углов треугольника: сумма углов треугольника равна 180 градусам.

Внешний угол треугольника – угол, смежный с одним из углов треугольника.

Свойство внешнего угла треугольника:

· внешний угол треугольника равен сумме двух углов треугольника не смежных с ним.

Теорема о соотношении между сторонами и углами треугольника: в треугольнике напротив бОльшей стороны лежит бОльший угол и наоборот, напротив бОльшего угла лежит бОльшая сторона.

Теорема о сторонах треугольника: каждая сторона треугольника меньше суммы двух других сторон.

Прямоугольный треугольник – треугольник, у которого один угол равен 90 градусам.

Свойства прямоугольного треугольника:

· сумма острых углов треугольника равна 90 градусам;

· в прямоугольном треугольнике катет, лежащий на против угла 30 градусов, равен половине гипотенузы;

· если в прямоугольном треугольнике катет равен половине гипотенузы, то угол, лежащий напротив этого катета, равен 30 градусов.

Признаки равенства прямоугольных треугольников:

1. если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны;

2. если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны;

3. если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны;

4. если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.

Расстояние от точки до прямой – перпендикуляр, проведенный от этой точки к данной прямой.

Расстояние между параллельными прямыми – перпендикуляр, проведенный от произвольной точки на одной прямой ко второй прямой.

Четырехугольник – геометрическая фигура, состоящая из 4 сторон и 4 углов.

Сумма углов выпуклого многоугольника равна (n-2)*180, где n – количество углов.

Сумма углов любого четырехугольника равна 360 градусов.

Параллелограмм – четырехугольник, у которого стороны попарно параллельны.

Свойства параллелограмма:

· противоположные углы и стороны равны;

· диагонали пересекаются и точкой пересечения делятся пополам.

Диагональ – отрезок, соединяющий две противоположные вершины четырехугольника.

Признаки параллелограмма:

· если в четырехугольнике стороны попарно равны, то данный четырехугольник – параллелограмм;

· если в четырехугольнике две стороны равны и параллельны, то данный четырехугольник параллелограмм;

· если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то данный четырехугольник параллелограмм.

Трапеция – четырехугольник, у которого две стороны параллельны (основания) а две другие – нет (боковые стороны).

Виды трапеций:

· произвольная;

· прямоугольная – трапеция, у которой два прямых угла;

· равнобедренная – трапеция, у которой боковые стороны равны.

Свойства равнобедренной трапеции:

· углы при основаниях равны;

· диагонали равны.

Ромб – частный случай параллелограмма, у которого все стороны равны.

Свойство ромба:

· у ромба диагонали перпендикулярны и делят углы, из которых они исходят, пополам.

Прямоугольник – частный случай параллелограмма, у которого все углы по 90 градусов.

Свойство прямоугольника:

· у прямоугольника диагонали равны

Признак прямоугольника:

· если в параллелограмме диагонали равны, то этот параллелограмм прямоугольник.

Квадрат – частный случай прямоугольника, у которого все стороны равны.

Теорема Фалеса – если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

Площадь многоугольника – часть плоскости, ограниченная сторонами многоугольника.

Свойство площадей:

· равные многоугольники имеют равные площади;

· если многоугольник состоит из нескольких многоугольников, то его площадь равна сумме площадей многоугольников, из которых он состоит.

Площадь квадрата равна квадрату его стороны: S =

Площадь прямоугольника равна произведению двух его смежных сторон: S =

Площадь трапеции равна половине произведения основания на высоту: S =

Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне: S =

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними: S =

Площадь ромба равна половине произведения его диагоналей: S =

Площадь ромба равна произведению стороны на высоту, проведенную к этой стороне: S =

Площадь ромба равна произведению двух его смежных сторон на синус угла между ними:

S =

Площадь треугольника равна половине произведения стороны на высоту, проведенную к этой стороне: S =

Площадь треугольника равна половине произведения двух его смежных сторон на синус угла между ними: S =

Площадь треугольника равна произведению его сторон, деленное на 4 радиуса описанной окружности: S =

Формула Герона, где р – полупериметр: S =

Площадь прямоугольного треугольника равна половине произведения его катетов: S =

Площадь прямоугольного треугольника равна половине произведения гипотенузы на высоту, проведенную к гипотенузе из вершины прямого угла: S =

Площадь равностороннего треугольника, где а – сторона треугольник: S =

Высота, медиана, биссектриса равностороннего треугольника, где а – сторона треугольника: h =

Площадь круга, где r – радиус: S =

Длина окружности, где r – радиус: C = 2

Длина дуги окружности, где r – радиус, α – грудасная мера дуги:

Площадь кругового сектора, где r – радиус, α – грудасная мера дуги:

Площадь правильного шестиугольника, где а – сторона шестиугольника: S =

Если в многоугольник можно вписать окружность, то его площадь можно найти как половина произведения периметра на радиус этой окружности: S =

Свойства площадей треугольников:

· если два треугольника имеют равные высоты, то их площади относятся как основания;

· если два треугольника имеют пару равных углов, то их площади относятся как произведение сторон, заключающих эти углы.

Теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Обратная теорема Пифагора: если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то данный треугольник – прямоугольный.

Формула для нахождения гипотенузы равнобедренного прямоугольного треугольника: , где х – катет равнобедренного прямоугольного треугольника.

Формула для нахождения диагонали квадрата: , где х – сторона квадрата.

Отношение двух величин – деление одной величины на другую (дробь).

Пропорция – равенство нескольких дробей.

Основное свойство пропорции: *d = c*b

Подобные треугольники – треугольники, у которых углы равны, а стороны одного треугольника пропорциональны сходственным сторонам другого.

Сходственные стороны – стороны двух подобных треугольников, расположенные напротив равных углов.

Коэффициент подобия – отношение двух сходственных сторон подобных треугольников.

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Отношение периметров двух подобных треугольников равно коэффициенту подобия.

Коэффициент подобия равных треугольников равен единице.

Теорема о биссектрисе треугольника: биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.

Признаки подобия треугольников:

1. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны;

2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами, равны, то такие треугольники подобны;

3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Средняя линия треугольника – отрезок, соединяющий середины двух сторон треугольника.

Теорема о средней линии треугольника: средняя линия треугольника параллельна противоположной стороне и равна ее половине.

Среднее арифметическое для нескольких величин равно сумме этих величин, деленной на их количество.

Среднее геометрическое (пропорциональное) для нескольких величин равно квадратному корню из их произведения.

Свойства среднего геометрического в прямоугольных треугольниках:

· высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое для отрезков, на которые гипотенуза делится этой высотой;

· катет прямоугольного треугольника есть среднее геометрическое для гипотенузы и отрезка гипотенузы, заключенного между этим катетом и высотой, проведенной к гипотенузе.

Синус острого угла прямоугольного треугольника – отношение противолежащего катета к гипотенузе.

Косинус острого угла прямоугольного треугольника – отношение прилежащего катета к гипотенузе.

Тангенс острого угла прямоугольного треугольника – отношение противолежащего катета к прилежащему.

Котангенс острого угла прямоугольного треугольника – отношение прилежащего катета к прилежащему.

Основное тригонометрическое тождество: sin2(a) + cos2(a) = 1

Тригонометрические формулы:

·

·

Табличные углы:

 

В прямоугольном треугольнике синус одного острого угла равен косинусу другого

В прямоугольном треугольнике косинус одного острого угла равен синусу другого

В прямоугольном треугольнике тангенс одного острого угла равен котангенсу другого

В прямоугольном треугольнике котангенс одного острого угла равен тангенсу другого

Синусы смежных углов равны

Косинусы смежных углов равны с противоположными знаками

Тангенсы смежных углов равны с противоположными знаками

Котангенсы смежных углов равны с противоположными знаками

Окружность – множество точек, равноудаленных от одной точки (центр окружности).

Радиус – отрезок, соединяющий центр окружности с любой точкой на окружности.

Хорда – отрезок, соединяющий любые две точки на окружности.

Диаметр – хорда, проходящая через центр окружности.

Соотношение диаметра и радиуса – диаметр равен двум радиусам.

Секущая – прямая, имеющая с окружностью две общих точки.

Касательная – прямая, имеющая с окружностью одну общую точку.

Теоремы о касательных:

1) Радиус, проведенный в точку касания, перпендикулярен касательной.

2) Отрезки касательных, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Теорема о хордах:

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Вписанный угол – угол, вершина которого лежит на окружности, а его стороны пересекают окружность.

Центральный угол – угол, вершина которого лежит в центре окружности, а его стороны пересекают окружность.

Дуга – часть окружности, ограниченная с двух сторон.

Вписанный угол равен половине дуги, на которую он опирается.

Центральный угол равен дуге, на которую он опирается.

Следствия из измерений центрального и вписанного углов:

1) вписанный угол равен половине центрального угла, опирающегося на ту же дугу;

2) если вписанные углы опираются на одну и ту же дугу, то они равны;

3) вписанный угол, опирающийся на диаметр равен 90 градусов.

Серединный перпендикуляр – прямая, проходящая через середину отрезка под углом 90 градусов.

Четыре замечательные точки треугольника:

· биссектрисы треугольника пересекаются в одной точке;

· медианы треугольника пересекаются в одной точке;

· высоты треугольника пересекаются в одной точке;

· серединные перпендикуляры треугольника пересекаются в одной точке.

Теорема о биссектрисе:

Любая точка, лежащая на биссектрисе угла, равноудалена от его сторон.

Теорема о медианах:

Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.

Теорема о серединном перпендикуляре:

Любая точка, лежащая на серединном перпендикуляре, проведенному к отрезку, равноудалена от концов этого отрезка.

Вписанная окружность – окружность, касающаяся всех сторон фигуры.

Описанная окружность – окружность, проходящая через каждую вершину фигуры.


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

Формулы геометрии. Площади фигур — материалы для подготовки к ЕГЭ и ОГЭ по Математике

Чтобы решить задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.

Для начала выучим формулы площадей фигур. Мы специально собрали их в удобную таблицу. Распечатайте, выучите и применяйте!


Конечно, не все формулы по геометрии есть в нашей таблице. Например, для решения задач по геометрии и стереометрии во второй части профильного ЕГЭ по математике применяются и другие формулы площади треугольника. О них мы обязательно расскажем.

Ты нашел то, что искал? Поделись с друзьями!

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ.

1. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

Ответ: .

2. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Ответ: .

3. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в  раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в  раз меньше, чем площадь всего круга.

Ответ: .

Читайте также о задачах на тему «Координаты и векторы». Для их решения вспомните, что такое абсцисса точки (это ее координата по ) и что такое ордината (координата по ). Пригодятся также такие понятия, как координаты вектора и длина вектора (она находится по теореме Пифагора), синус и косинус угла, угловой коэффициент прямой, уравнение прямой, а также сумма, разность и скалярное произведение векторов, угол между векторами.

Все формулы прямоугольного треугольника ℹ️ определение, примеры расчетов углов, соотношение сторон, формулы нахождения площади и периметра, теорема Пифагора


Прямоуго́льный треуго́льник — это треугольник, в котором один угол прямой (то есть 90 градусов). Соотношения между сторонами и углами прямоугольного треугольника лежат в основе тригонометрии.

 


Формулы 

1. Сумма острых углов прямоугольного треугольника равна 90 0:



2. Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе:


3. Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе:

4. Тангенс острого угла равен отношению противолежащего катета к прилежащему катету:

5. Котангенс острого угла равен отношению прилежащего катета к противолежащему катету:

6. Секанс острого угла равен отношению гипотенузы к прилежащему катету:

7. Косеканс острого угла равен отношению гипотенузы к противолежащему:

8. Катет, противолежащий углу, равен произведению гипотенузы на синус этого угла:

9. Катет, прилежащий углу, равен произведению гипотенузы на косинус этого угла:

10. Катет, противолежащий углу, равен произведению второго катета на тангенс угла:

11. Катет, прилежащий углу, равен произведению второго катета на котангенс угла:

12. Гипотенуза равна отношению катета к синусу противолежащего угла, и/или частному отношению катета и косинуса прилежащего угла (угла между ними):

13. Теорема Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.


14. Медианы, проведенные к катетам прямоугольного треугольника:

15. Медиана, проведенная к гипотенузе:

16. Радиус окружности, описанной около прямоугольного треугольника: 


17. Радиус окружности, вписанной в прямоугольный треугольник:

 
18. Площадь прямоугольного треугольника равна половине произведения катетов треугольника:

19. Периметр прямоугольного треугольника


Все формулы для треугольника

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

 

L — биссектриса, отрезок ME , исходящий из прямого угла (90 град)

a, b — катеты прямоугольного треугольника

с — гипотенуза

α — угол прилежащий к гипотенузе

 

Формула длины биссектрисы через катеты, ( L):

Формула длины биссектрисы через катеты

 

Формула длины биссектрисы через гипотенузу и угол, ( L):

Формула длины биссектрисы через гипотенузу и угол

 

 

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

 

L — биссектриса, отрезок ME , исходящий из острого угла

a, b — катеты прямоугольного треугольника

с — гипотенуза

α, β — углы прилежащие к гипотенузе

 

Формулы длины биссектрисы через катет и угол, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

 

Формула длины биссектрисы через катет и гипотенузу, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу

 

Все геометрические формулы для любых треугольников


, — ножки

— гипотенуза

, — острые углы при гипотенузе

Рассчитайте длину ножки, если заданы другие стороны и углы ( a b ):

Вычислите длину гипотенузы, если заданы участки и углы при гипотенузе ( c ):

Вычислите длину сторон прямоугольного треугольника, используя теорему Пифагора ( c a b ):



.

Тригонометрические идентификаторы

Тригонометрические тождества (тригонометрические тождества) или тригонометрические формулы описывают отношения между синусом, косинусом, тангенсом и котангенсом и используются при решении математических задач.

Ниже приведены формулы двойного угла, значения тригонометрических функций, формула половинного угла, тождества двойного угла и другие формулы. Дополнительно приведены значения тригонометрических функций для наиболее распространенных углов.


Основные тригонометрические тождества

… подготовка …

Формула двойного угла

… подготовка …

Формула трех углов

… подготовка …

Формула
для уменьшения степени

… подготовка …

Формула
для уменьшения степени

… подготовка …

Формула
для уменьшения степени

… подготовка …

Формула приведения
к степени половинного аргумента

… подготовка …

Формула сложения

… подготовка …

Формулы вычитания

… подготовка …

Тригонометрические формулы
, включающие сумму в идентичности продукта

… подготовка …

Тригонометрические формулы
, учитывающие разницу в идентичности продукта

… подготовка …

Формулы пересчета сумм

… подготовка …

Формулы тригонометрии
, включающие идентификационные данные продукта

… подготовка …

Формулы для преобразования
произведения функций в степень

… подготовка …

Формулы уменьшения степени

… подготовка …

Универсальная тригонометрическая подстановка

… подготовка …

Значения тригонометрических функций

α 0
α ° 0 ° 30 ° 45 ° 60 ° 90 ° 120 ° 135 ° 150 ° 180 ° 210 ° 225 ° 240 ° 270 ° 300 ° 315 ° 330 ° 360 °
sin α 0 1 0 -1 0
cos α 1 0 -1 0 1
тг α 0 1 -1 0 1 -1 0
CTG α 1 0 -1 1 0 -1


Скачать тригонометрические тождества и формулы

Вы можете скачать Тригонометрические тождества и формулы в виде картинки:

.

Отправить ответ

avatar
  Подписаться  
Уведомление о