Содержание

Принцип работы лазерного дальномера

Принцип работы лазерного дальномера

В ходе ремонта многочисленные промеры рулеткой и вычисления площади объектов требуют высокой концентрации и времени.

Справиться с этим помогают лазерные рулетки (дальномеры) — простые в эксплуатации приборы с высокой точностью измерения.

Они не только мгновенно определят расстояние, но и вычислят площадь, объем и другие характеристики объекта.

Принцип работы лазерного дальномера

Лазерный дальномер называют по-разному. Из-за умения измерять расстояние его окрестили электронной или лазерной рулеткой, хотя на самом деле традиционного для рулетки колеса в нем нет. Этим же объясняется и название лазерной линейки.

Дальномеры бывают импульсные и фазовые. Принцип действия импульсных дальномеров схож с принципом работы эхолотов. При включении лазерного дальномера в нем генерируется лазерный луч и посылается излучателем до объекта, например до ближайшей стены комнаты (в звуковых дальномерах генерируется ультразвук). Луч отражается от объекта и поступает в приемник устройства. По времени, которое проходит с момента передачи до приема луча, и определяется расстояние до объекта. Полученный сигнал обрабатывается микропроцессором умного устройства и передается на дисплей в понятном для восприятия виде. Фазовые дальномеры измеряют разность фаз волны (подробнее ниже).

Для проведения замера достаточно включить функцию лазерного луча, навести дальномер на объект и нажать кнопку измерения расстояния. Расчет площади, объема и прочих характеристик также происходит при нажатии на предусмотренные для этого кнопки.

Функции лазерных дальномеров

Определение расстояния из разных точек отсчета

У лазерного дальномера есть несколько точек отсчета, что связано с особенностями измерения. Луч лазера исходит из корпуса прибора, так что при измерении расстояния от одной стены до другой придется учитывать длину этого корпуса. Чтобы не пришлось вести такие подсчеты в уме, в дальномерах настраивается точка отсчета. Она ведется от заднего торца устройства, от переднего торца или от упорной скобы (при ее наличии). Когда нужно узнать точную длину объекта, скобу выдвигают на 90 градусов (фактически цепляют за край объекта). Если нужно мерить из угла, то скобу выдвигают на 180 градусов, ведь сам прибор строго в угол не поместится.

Измерение площади и объема

Для измерения лазерным дальномером площади прямоугольника нужно определить его длину, ширину и нажать на специальную кнопку. Прибор рассчитает площадь фигуры и выведет результат на экран. Для определения объема параллелепипеда придется измерить его длину, ширину и высоту. Некоторые электронные рулетки умеют измерять углы, площади и объемы более сложных фигур. Такие измерения помогут быстро определить площадь пола, потолка, стен или узнать объем конструкции. Последнее потребуется, например, при строительстве бассейна или установке кондиционера, когда нужно знать объем воздуха кондиционируемых комнат. В некоторых приборах есть специальная функция маляра, которая складывает длины стен помещения и умножает на высоту, чтобы узнать общую площадь окрашиваемого или оклеиваемого обоями помещения.

Непрерывные измерения

У лазерных рулеток есть один минус по сравнению с обычными рулетками. В то время как мерной лентой легко отступить от стены на заданное расстояние, лазерной линейке нужна поверхность, от которой отразится луч. Для решения этой проблемы придумана функция непрерывных измерений. То есть если нужно отступить от стены, положим, на полтора метра, нужно включить эту функцию и постепенно отходить от стены. В это время прибор будет делать промеры через 1 секунду (зависит от настроек), что поможет отступить на точно заданное расстояние.

Измерения на основе вычислений

Если длину линии по каким-то причинам измерить прибором не получается, можно рассчитать ее по определенным формулам. Представим, что у помещения наклонная крыша. Тогда для определения длины наклонной линии понадобится не прямоугольник, а трапеция. Измерить три линии этой трапеции дальномером труда не составит, в то время как длину четвертой линии прибор рассчитает сам по функции трапеции.

Аналогично рассчитывается и высота до объекта, если напрямую измерить ее затруднительно. Тогда измеряется расстояние до этой точки по диагонали (гипотенуза) и по горизонтали (первый катет). По известной со школьного курса геометрии теореме Пифагора прибор рассчитает вертикаль (второй катет). Такой расчет возможен только для прямоугольных треугольников, то есть в случае вертикальных, а не наклонных поверхностей.

Определение минимума и максимума

Определить с помощью лазерной рулетки длину диагонали большой комнаты не так-то просто, поскольку нужно четкое попадание из угла в угол. Режим максимума помогает снизить риск ошибки и предполагает проведение нескольких последовательных замеров. Прибор ориентируется на первый замер и считает его наименьшим. Если при последующих замерах найдется большее значение, то оно и будет считаться длиной диагонали. Это делается из соображений, что длина диагонали всегда является наибольшей величиной из всех возможных длин помещения.

Режим минимума аналогичен предыдущему и снижает риски измерить расстояние не строго под прямым углом, а по диагонали. Например, нужно измерить расстояние от пола до потолка. Тогда в режиме минимума прибор найдет наименьшее из всех измеренных значений.

Виды лазерных дальномеров

По назначению лазерные дальномеры делят на бытовые и профессиональные. Первые чаще всего имеют небольшую (до 10 м) или среднюю (до 50 м) дальность измерения, и ограниченный функционал. Профессиональные электронные рулетки способны измерять расстояния более двухсот метров, имеют широкий набор функций и могут работать в сложных погодных условиях. Большая дальность необходима при возведении крупных объектов, измерении территории и в других случаях.

По области применения лазерные рулетки делятся на разные категории. Есть дальномеры для промышленности, военной сферы, геодезии, строительства. Есть гаджеты для рыбалки, охоты и даже для гольфа! Они отличаются друг от друга как по внешнему виду, так и по набору функций, так как призваны решать разные задачи. Например, качественный лазерный дальномер для охоты ориентирован на работу в условиях дождя, пыли, высокой влажности, мороза, умеет игнорировать траву, ветки деревьев и рассеянные в воздухе частицы вроде снежинок или дождинок.

По принципу работы бывают импульсные дальномеры и фазовые. Импульсные содержат встроенный таймер, с помощью которого определяют время отражения луча от объекта. На основании времени и скорости света рассчитывается расстояние. У импульсных лазерных рулеток мощный лазер, так что они могут измерять значительные расстояния, но обладают меньшей точностью по сравнению с фазовыми. Снижение точности связано с тем, что на расстоянии даже в несколько сот метров световой луч отражается слишком быстро (скорость света 300 тыс. км/с), что требует сверхточного таймера. Свое название импульсные рулетки получили из-за того, что в них луч лазера посылается импульсами.

В фазовых лазерных дальномерах луч посылается постоянно и модулируется сигналом определенной частоты. Отраженная от объекта волна фиксируется фотоприемником. Волна посылается в одной фазе, а отражается в другой, так что разность фаз и позволяет вычислить расстояние до объекта. Фазовые рулетки более точны, но из-за постоянной работы лазера теряют в мощности луча, потому используются в основном для измерения на небольших расстояниях.

Как выбрать лазерный дальномер       

При выборе лазерного дальномера советуем определиться с теми задачами, для которых он приобретается. От этого будут зависеть и характеристики гаджета.Максимум и минимум измерений. Для дома подойдет лазерная линейка с дальностью до 30 метров. Но для измерений на улице или в больших помещениях имеет смысл покупать прибор с высоким максимумом (100 и более метров). Минимум связан с тем, что лазерный дальномер не может измерять маленькое расстояние, как обычная линейка. У одних приборов этот показатель составляет около полуметра, у других — только пять сантиметров (чем дороже, тем шире шкала измерений).

Количество точек начала отсчета. Отсчет можно вести от верхнего края электронной рулетки, нижнего края и скобы (см. выше). Чем больше точек отсчета, тем точнее измерения.

Функционал. Помимо функциональных возможностей (расчета площади, объема, непрерывных измерений, сохранения измерений в память и пр.) советуем обратить внимание и на наличие автоотключения, жидкостного уровня для точной установки прибора, возможности установки на штатив, наличие дополнительных функций (уклономера, видоискателя, цифрового уровня и пр.).

Длина волны и класс лазера. Чем короче длина волны, тем лучше видно луч. Измеряется эта величина в нанометрах. Класс лазера характеризует его мощность и безопасность для глаз. Чем выше класс, тем мощнее луч. Его лучше видно в сложных условиях, но и опасность повреждения глаз при попадании в них лазерного луча возрастает. Безопасным и наиболее распространенным считает второй класс, в то время как использовать дальномер с лазером третьего класса рекомендуется только в защитных очках.

Другие характеристики. Среди них диапазон рабочих температур, подсветка и звуковая индикация, комплектация (наличие USB-зарядки, штатива, сумки, ремешка, адаптера), степень защиты от ударов, влаги и прочего и габариты прибора.

 

Лазерные дальномеры — устройства для измерения расстояния с широкой сферой применения

Дальномеры при работе постоянно излучают сигнал, частота которого не превышает 500 МГц. Волна имеет неизменную длину (500-1100 нанометров). Фотоприёмник принимает отражающийся от объекта импульс. Расстояние определяется на основании расчёта разницы между изначальной и конечной фазами сигнала. Такие приборы обеспечивают высокую точность измерений при удалённости объекта не более 1 км.

Сфера применения

  • Строительство.
  • Некоторые виды геодезических работ.
  • Сканеры.
  • Робототехника.
  • Навигация.
  • Геодезия.
  • Военное дело.
  • Астрономия и т.д.

Характеристики прибора

Вне зависимости от того, какими дополнительными опциями оснащён лазерный дальномер, он обладает следующими характеристиками:

  • Диапазон измерений (показывает максимальное расстояние, на котором прибор может измерить параметры объекта с точностью, заявленной производителем. У современных моделей этот показатель достигает 100 м).
  • Точность (допустимая погрешность в измерениях. Обычно находится в пределах 3 мм).
  • Питание. Обычно осуществляется от элементов АА или ААА (так называемых «пальчиковых» или «мизинчиковых» батареек). Некоторые модели питаются от аккумуляторов или элементов питания нестандартных типов, однако лучше выбрать прибор на классических батареях, которые без труда можно найти в магазине.
  • Масса. Современные компактные дальномеры весят до 150 грамм. Более тяжёлые модели неудобны в использовании, особенно если с прибором приходится работать постоянно.

Дополнительные функции

Наиболее популярными являются следующие дополнения:

  • Уровень (с его помощью можно определить отклонения плоскостей по вертикали и горизонтали).
  • Угломер (в совокупности с уровнем позволяет производить одновременно несколько измерений).
  • Защита от пыли и влаги. Дальномеры являются точными электронными устройствами. Попадание внутрь пыли или влаги может привести к выходу его из строя. Защищёнными корпусами оснащаются практически все современные модели. Однако если прибор планируется эксплуатировать в неблагоприятных условиях, рекомендуется выбрать вариант с повышенной защитой. Дополнительно можно приобрести специальный чехол.
  • Подсветка
    . Даже на дорогостоящих моделях со множеством дополнительных опций иногда можно встретить монохромный дисплей и клавиатуру без подсветки. Такие приборы не очень удобны в эксплуатации. Лучше выбрать устройство с активируемой либо постоянной подсветкой и цветным дисплеем.
  • Дальномер, оснащённый этой функцией, можно подключить к смартфону, планшету или ноутбуку для сохранения, анализа и передачи данных. Если выполнять все эти действия вручную, темп работы существенно снизится.

Критерии выбора лазерного дальномера

Главное, чтобы прибор мог справиться с поставленной задачей. Чтобы не ошибиться, рекомендуется обратить внимание на несколько важных факторов.

Место проведения измерений

При ярком солнечном свете лазерный луч можно визуально распознать на расстоянии до 10 м. Для замеров на более дальних дистанциях в дальномер должен быть встроен оптический или цифровой визир. При работе на больших открытых площадках следует выбирать устройства с повышенной дальностью и точностью. В помещениях можно использовать любую модель.

Точность и диапазон

Стандартные дальномеры обеспечивает точность 1-3 мм на расстоянии от 50 см до 100 м. 

Условия

Уровень защиты большинства современных дальномеров — IP54. Первая цифра обозначает степень пыленепроницаемости. Показатель 5 говорит о том, что попадание пыли внутрь корпуса в малых количествах не исключается, однако работе прибора это не помешает.

Вторая цифра – защита от влаги. Дальномер с уровнем 4 вряд ли выдержит полное погружение в воду, однако вполне может работать под дождём и брызгами.

В большинстве случаев таких параметров бывает достаточно для бесперебойной работы устройства. Однако если на площадке в большом количестве присутствует мелкая пыль или на прибор может попасть вода, рекомендуется выбрать модель с усиленной защитой либо купить специальный чехол.

Устройство лазерного дальномера

Лазерный дальномер предназначен для измерения расстояний.

Работа этого прибора основана на следующем принципе: он посылает лазерный сигнал, который отражается от объекта и возвращается обратно, измеряет время его прохождения и относительно него высчитывает расстояние до объекта.

Большинство современных дальномеров имеет компактную форму и удобны в применении.

Чтобы пользоваться таким устройством, не нужно особых умений. 

Основные элементы строительного дальномера

  1. Оптический лазерный излучатель — служит для генерирования и посылки луча в нужную точку.
  2. Оптический отражатель — принимает отражённый луч.
  3. Компьютерный преобразователь или микропроцессор.
  4. Встроенная программа вычислений — предназначена для обработки результатов измерений и выдачи их в нужном виде.
  5. Фиксатор дальномера.
  6. Оптический прицел — позволяет направить луч точно в нужное место.
  7. Пузырьковый уровень.Строительный лазерный дальномер: выбор и эксплуатацияПузырьковый уровень, встроенный в лазерный дальномер, позволяет устанавливать прибор ровно на поверхности

В строительных лазерных дальномерах есть блокнот и калькулятор. Прибор сам будет производить вычисления и сохранять данные в памяти.

Виды дальномеров

По принципу работы лазерные дальномеры разделяются на фазовые и импульсные.

Фазовые измерители

Фазовые дальномеры имеют не очень большую дальность действия, но они намного точнее в силу принципа своей работы и дешевле из-за того, что в них не встраивают дорогой сверхточный таймер.

Фазовый дальномер работает на небольших расстояниях, но имеет хорошую точность и низкую цену

Принцип работы дальномеров такого типа заключается в том, что лазерная волна посылается на объект с одной фазой, а отражаясь, возвращается с другой. Рассчитав сдвиг фаз, прибор определяет расстояние до объекта. Благодаря такому принципу работы измерения фазовым дальномером имеют высокую точность. При необходимости работы на расстояниях, превышающих длину излучаемой волны, прибор посылает сигнал несколько раз, изменяя частоту модуляции. Затем процессор устройства определяет точное расстояние до цели путём решения системы линейных уравнений.

Импульсные измерители

Импульсный дальномер состоит из детектора излучения и импульсного лазера. Он вычисляет расстояние до объекта путём умножения времени прохождения луча на величину скорости света. Импульсные измерители работают на гораздо больших расстояниях, чем фазовые, благодаря более высокой мощности излучаемого импульса. Такие дальномеры часто применяют для военных прицелов.

Видео: принцип работы лазерного дальномера

Применение и функции лазерного дальномера

С помощью лазерной рулетки можно рассчитать объём, вычислить площадь помещения, замерить сложные недоступные отрезки, определить длину ската крыши и угол его наклона, найти площадь стены с наклоном у потолка, а также её диагональ.

Дополнительные функции некоторых современных дальномеров

  1. Подсветка.
  2. Ватерпас или пузырьковый уровень. Это приспособление чаще всего устанавливают на строительных лазерных рулетках. Оно поможет определить, ровно ли располагается прибор на поверхности.
  3. Визир — специальное устройство, приближающее точку, до которой ведётся измерение. Функция работает аналогично цифровому увеличению (зуму) на видеокамерах и особенно актуальна для работы на больших расстояниях.
  4. Дисплей с цветным экраном.
  5. Измеритель температуры воздуха. Допустимые погодные условия для использования каждого прибора указаны в инструкции. В любом случае при работе на морозе необходимо дать устройству некоторое время на адаптацию к окружающей температуре.
  6. Датчик для измерения наклона в пределах до 45°. Он нужен для проведения расчёта угла ската крыши, наклона навеса и других аналогичных операций. Лазерный дальномер со встроенным датчиком измерения угла наклона позволяет вычислять расстояния на криволинейной поверхности
  7. Индикатор уровня зарядки батареи.
  8. Функция Bluetooth.
  9. Трекинг — непрерывное измерение расстояний. При перемещении дальномера трекинг производит замеры не один, а несколько раз с определённой периодичностью и показывает получаемые результаты. Такая опция необходима для того, чтобы отмерить нужную длину конструкции или помещения.
  10. Различные математические функции.

Работа с лазерной рулеткой

  1. Установить и зафиксировать прибор в точке начала измерений.
  2. Включить дальномер при помощи специальной кнопки.
  3. Выбрать нужную точку отсчёта. Во многих моделях для удобства встроена возможность выбора точки — от передней части корпуса прибора или от задней. Такая функция нужна для определения расстояния без учёта размеров корпуса. Некоторые устройства также оснащены специальными скобами, позволяющими проводить измерения в неудобных местах. Точку отсчёта в них можно выбрать от края корпуса либо от самой скобы.
  4. Выбрать необходимые единицы измерения.
  5. Начать измерения, нажав функциональную кнопку.
  6. Просмотреть результат на дисплее прибора.

Например, если нужно определить расстояние от одной стены до другой, необходимо провести следующие действия:

  1. Установить прибор на одной стене.
  2. Убедиться, что прибор зафиксирован ровно на поверхности и плотно у стены.
  3. Назначить точкой отсчёта прижатую часть корпуса. Это позволит учесть в расчётах толщину самой рулетки.
  4. Включить функцию начала замеров.
  5. Посмотреть полученные результаты на экране. Для того чтобы измерить необходимое расстояние, нужно приложить прибор к стене и нажать функциональную кнопку — все остальные действия прибор произведёт сам.

Для получения более точных расчётов не рекомендуется держать прибор в руках при измерении. Запрещается направлять лазерный луч прибора в лицо, потому что он может обжечь сетчатку глаза.

Видео: как пользоваться лазерной рулеткой

Правила эксплуатации дальномера

  1. Лазерную рулетку следует эксплуатировать согласно технической инструкции.
  2. Нельзя допускать попадания влаги и грязи в прибор, а также перегрева и переохлаждения дальномера.
  3. Необходимо беречь прибор от падения и ударов.
  4. Проводить ремонт дальномера следует только в специальных мастерских.
  5. Хранить лазерный дальномер рекомендуется в специальном чехле.

Устройство компактного лазерного строительного дальномера

Устройство лазерного дальномера состоит из следующих узлов:

Схема работы лазерного дальномера

  1. Излучатель – он генерирует луч и отправляет его в нужную точку.
  2. Отражатель – он необходим для приема, отраженного от объекта луча.
  3. Микропроцессор, для выполнения необходимых расчетов.
  4. Предустановленная программа необходимая для обработки полученных при замерах данных.
  5. Прицел, позволяющий направить луч в необходимое место.
  6. Уровень, с помощью которого прибор можно строго выставить в горизонтальной или вертикальной плоскости.

Дополнительные функции

Применяемая в составе лазерных дальномеров микроэлектроника позволяет не только выполнять прямые замеры. Многие устройства подобного типа обладают некоторыми дополнительными функции, к которым можно отнести:

1. Функция непрерывного измерения. При работе в обычном режиме дальномер при нажатии кнопки на пульте фиксирует результат и выводит его на монитор. Но, довольно часто, возникает необходимость в проведении постоянного измерения расстояния, например, от стены до будущей перегородки. Для этого прибор переводят в режим непрерывного измерения. В таком режиме работы, устройство с некоторой частотой самостоятельно выполняет замер и показывает их результаты на монитор. Измерение проходит в реальном режиме времени.

2. Определение наибольшего и наименьшего расстояния. Эта функция полезна при определении диагонали в комнате. Дело в том, что выполнить ее замер не так и просто при направлении лазерного луча можно промахнуться и в результате будут получены неточные результаты. После установки на приборе минимального расстояния, он будет фиксировать только те замеры, которые больше установленной.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Как правильно пользоваться лазерной рулеткой и ее виды

С каждым днем в нашей повседневной жизни появляется все больше техники, позволяющей решать множество задач. Простые привычные в обиходе предметы сменяются более усовершенствованными инновационными новинками. Вот и традиционной рулетке нашлась современная альтернатива – лазерный дальномер. Это электронный оптический прибор, который используется для измерения длины, высоты, площади, объема, расстояний между объектами. При помощи этого оборудования замеры плоскостей выполняются с максимальной точностью. Лазерный дальномер, кроме строительной сферы, широко применяется в ландшафтном дизайне, в военной промышленности, в космической и авиационной геодезии, астрономии и других отраслях. Зная принцип работы устройства, можно использовать лазерный прибор в своих целях с максимальной эффективностью. Технологии стремительно развиваются, но и требования к качеству строительной техники постоянно растут. Современные модели измерительных приборов оснащены дополнительными полезными опциями и улучшенными рабочими характеристиками. В продаже можно встретить лазерные дальномеры с оптическим и цифровым визиром.

Какое предназначение инструмента

Лазерная линейка – еще одно название оптического прибора для измерения расстояний между предметами. Многие по привычке называют его лазерная рулетка. В любом случае, под этими именами скрывается один и тот же прибор. В основе работы устройства лежит измерение интервала времени между зондирующим сигналом и сигналом отражения от объекта.

Инженерно-геодезические измерения – основополагающая строительных работ. Мероприятия проводятся задолго до начала возведения зданий и сооружений. Вопрос точности выполненных геодезических работ играет важную роль, и по итогу определяет качество и надежность построенных объектов. Вот почему в строительстве так важна точность измерений. Лазерный дальномер выполняет замеры с высочайшей точностью, а по уровню показаний значительно превосходит стандартные измерительные приборы (рулетки, мерные ленты).

Лазерный дальномер – находка для строителей. С его помощью можно:

  • Быстро определить площади стен помещений, определить необходимое количество стройматериалов
  • Вычислить высоту здания
  • Определить максимальное и минимальное расстояние до объекта
  • Вычислить угол наклона крыши
  • Сохранить полученные данные или сбросить на компьютер
  • Замерить удаленные объекты, не приближаясь к ним

Какой принцип работы у лазерных дальномеров

Конструктивно оптический прибор состоит из следующих элементов:

  • Излучателя – излучает лазерные лучи на выбранный объект
  • Приемника – принимает лазерные лучи от объекта
  • Микропроцессора – конвертирует световой сигнал в цифровую величину
  • Дисплея – экран, где отображаются цифровые значения

Все элементы заключены в пластиковый или металлический корпус. Последний – выходит дороже, но долговечнее. На поверхности имеются кнопки управления и ЖК-дисплей. По габаритам прибор выглядит не больше мобильного телефона. Но встречаются и совсем миниатюрные модели лазерных дальномеров, которые к тому же стоят дешевле. Работает устройство от аккумуляторных батареек. Их запаса хватает, чтобы выполнить около двух тысяч измерений.

При включении лазерного прибора и наведении его на нужный объект, электромагнитная волна генерирует лазерный луч, который отражается от исходной зоны. Тут же сигнал возвращается в приемник, после чего происходит обработка данных.

В основе работы оборудования заложен подсчет временного интервала, за который лазерный луч проходит расстояние от исходной точки до объекта, и обратно. Полученное время прохождения сигнала микроконтроллер умножает на скорость лазерного луча, затем делит эту величину пополам. Полученный результат выводится на дисплей за доли секунды в понятной единице измерения (сантиметрах, миллиметрах, дециметрах или метрах). Расстояния для электронного измерителя длины также не есть проблемой. Он с такой же точностью выдаст результаты, даже если человек находится вдали от объекта.

Виды рассматриваемых измерителей

Лазерный дальномер или рулетка, по типу обработки излучаемого сигнала, бывает двух видов:

  1. Фазовый – метод измерения расстояния основан на разнице фаз между излученным и полученным сигналом
  2. Импульсный – определяет время, за которое лазерный импульс проходит расстояние от объекта и обратно

Лазерный измерительный прибор, в основе которого лежит фазовый метод обработки сигналов, обладает необычайно высокой точностью измерений и пользуется спросом у геодезистов, топографов, строителей. Это дорогое профессиональное оборудование. Импульсные дальномеры более доступны в цене, потому пользуются большей популярностью.

Преимущества рулетки лазерного типа

Только представьте себе, сколько неудобств вы испытываете при использовании традиционной рулетки. Ограниченность размера полотна, вечные надломы при замерах на расстоянии, невозможность измерить дистанцию до нужной плоскости в одиночку. Чтобы зафиксировать результаты приходиться иметь под рукой калькулятор, карандаш и блокнот. Сама скорость измерения оставляет желать лучшего, а значит падает производительность работ на строительном объекте.

А что делать в том случае, если к объекту невозможно добраться обычной рулеткой ? Это могут быть аварийные здания, представляющие угрозу для жизни, опасные участки и т.д.

«Умная» рулетка поможет избежать всех этих неудобств, облегчив и ускорив процесс. Теперь не придется крепить конец металлического полотна, следить за его натяжением и контролировать, чтобы он не слетел.

Преимущества лазерной рулетки:

  • Возможность проведения всех измерительных операций одним человеком, увеличивая скорость замеров
  • Оперативность получения достоверных значений
  • Возможность сохранения данных на внутренней памяти устройства
  • Точная фокусировка на объектах
  • Есть возможность приобрести устройство с различной дальностью действия от 15 м до 300 м
  • Стабильная работа в жару и холод
  • Широкий функционал
  • Небольшие габариты и маленький вес

Есть отечественные мастера, которые создают лазерный дальномер своими руками. Самодельный прибор используют в бытовых условиях.

По каким параметрам выбирать

Как выбрать лазерную рулетку при настолько широком ассортименте ? При покупке конкретной модели нужно заранее знать ее технические характеристики и на какие задачи она способна.

Лазерный дальномер делится на два класса: бытового и профессионального назначения. Первый вариант – доступен каждому, имеет базовый набор функций, вполне подходит для домашнего ремонта и строительства. Второй класс – из разряда профессионального оборудования и его функциональные возможности куда шире. А цена – оправдана высокая. Тут уж за качество придется платить.

Но это вовсе не означает, что бюджетные модели стоит сразу «отмести» и копить средства на вариант подороже. Посудите сами, какой смысл покупать дорогущий прибор с оригинальными «примочками», если в них нет никакой необходимости. Ведь можно купить лучший лазерный дальномер для дома, не переплачивая за ненужные функции.

Критерии выбора устройства:

  1. Цена – напрямую зависит от функционала и рабочих характеристик. Готовьтесь к тому, что стоимость качественных приборов будет выше. Выбор делаете вы, исходя из собственных возможностей
  2. Дальность измерений – определитесь где вы будите делать замеры дальномером. Если эксплуатация предполагается только в помещении модели с дальностью измерения до 40-50 м будет вполне достаточно. Для работы на открытом пространстве следует выбирать измеритель с дальностью до 150-250 м
  3. Точность показаний – если требуется прибить дома полку в ванной, погрешность измерений не так важна. Другое дело, к примеру прокладка канализационных труб, где точность показаний играет большую роль. Модели с минимальной погрешностью (-/+ 1 мм) относятся к более высокой ценовой категории.

Полезные дополнительные опции, которыми оснащаются модели «побогаче»:

  • Таймер – отсрочка времени начала замеров
  • Широкодиапазонный уклономер – датчик точного измерения углов наклона
  • Bluetooth – для передачи данных на персональный компьютер или ноутбук с целью их дальнейшей обработки или хранения
  • Расчеты по Пифагору – опция, способная выполнять более сложные автоматические расчеты
  • Видоискатель – оптический усилитель, отвечающий за точную фокусировку сгенерированного лазерного луча на объекте
  • Пыле– и влагонепроницаемый корпус для защиты внутренних элементов от негативного воздействия окружающей среды

Как пользоваться в помещении и на улице – отличия

Работа прибора на улице и в помещении несколько отличается. Дальномер для улицы должен оснащаться отражающей пластиной – визиром. Для работы в солнечный день не обойтись без специальных красных очков. Они помогут обнаружить лазерный луч на плоскости при ярком дневном свете. Рулетка лазерного типа для улицы чаще имеет прочный корпус, специально предназначенный для работы на открытом воздухе. Цена дальномера для дома и улицы несколько различается. Последний будет стоить немного дороже. В остальном же действия измерительных приборов – идентичное.

Погрешность большинства бюджетных моделей дальномера составляет всего ничего –  1-3 мм.

На некорректность выдаваемых показаний и увеличение погрешности влияют несколько факторов:

  • Конструктивная особенность модели
  • Дальность измерения (чем она больше, тем выше будет погрешность)
  • Ошибки в работе с прибором

Рулетка электронного типа никакой сложности в работе не представляет. Включить прибор, нажать кнопку и наблюдать результаты на дисплее – что может быть проще. Но есть все же некоторые правила, которых стоит придерживаться:

  1. В процессе замеров важно, чтобы дальномер был неподвижен. Добиться этого можно при помощи штатива
  2. Следить за уровнем заряда батареи. Приборы со слабым зарядом могут негативно влиять на результат
  3. Объект, на который направлен лазерный луч не должен обладать высокой (зеркало, фольга) и низкой (пластик) отражательной способностью, иначе точность выданных показаний будет под сомнением

Для чего прибору нужна поверка и калибровка

Лазерные рулетки относятся к высокотехнологичным средствам измерения, и перед началом эксплуатации подлежат процедуре поверки (аттестации). Метрологическая аттестация проводится с целью подтверждения заявленных характеристик прибора и дальнейшей его регистрации в едином государственном реестре измерительных устройств.

Это мероприятие выполняется в таких случаях:

  • Прибор был только приобретен и планируется использоваться по назначению
  • Если есть подозрения на некорректную работу прибора (ошибки, допущенные при хранении, транспортировке)
  • По собственному желанию владельца

Поверка происходит в несколько этапов:

  1. Внешний осмотр прибора, где возможно выявить все явные дефекты
  2. Проверка прибора в работе – оценка эффективности его работы
  3. Опробование – определяется мощность лазерного луча и его диаметр, длина волн
  4. Выявление погрешности

По итогу аттестации выдается свидетельство, подтверждающее точность измерений дальномера в пределах установленной погрешности.

Процедуры поверки и калибровки носят один и тот же характер, только последняя выполняется в частном порядке по желанию владельца. Есть фирмы, предоставляющие услуги калибровки владельцам приборов, которые не внесены в государственных реестр, так же с выдачей на руки свидетельства.

Теперь вы знаете по каким критериям нужно выбирать дальномер лазерного типа, чтобы выполнять быстрые и точные замеры. Осталось найти надежного продавца, который предложит вам качественный и сертифицированный товар.

Верного помощника в точных измерениях предлагает купить онлайн-магазин Cylinder. Заказать лазерный строительный дальномер с доставкой можно, оформив заявку прямо на сайте. Листая страницы онлайн-каталога, возможно, вы найдете и другие полезные для себя товары для дома, работы и отдыха.

Делать покупки на сайте одинаково удобно с любых уголков нашей страны. Мы стараемся отправлять товары в день заказа, понимая, как для вас важно получить его как можно быстрее.

 

Что такое лазерный дальномер и как им пользоваться


Компактное устройство, пришедшее на смену механическим рулеткам. Способно моментально выполнять точные измерения и сложные расчеты, быстро и без помощи напарника, держащего край ленты в нужной точке. В данной теме, мы коротко и ясно расскажем, что такое дальномер, какие он имеет разновидности, конструкцию и функционал, а по завершению разбора устройства, расскажем, как им пользоваться.

Что такое дальномер

Вне зависимости от великого многообразия видов и моделей, портативный дальномер — это всегда компактное устройство с автономным источником питания, измеряющее расстояние от себя до ближайшей точки, на которую направлено. По принципу работы, все бесконтактные измерительные приборы делятся на 2 группы:

Активные – определяют расстояние до точки с помощью звукового, светового или лазерного луча, испускаемых прибором. Дойдя до ближайшего препятствия, фотоны света или звуковая волна, отражаются и направляются обратно к дальномеру. Чувствительный датчик мгновенно улавливает полученный сигнал, получая максимально точное время в микросекундах (мкс). Поскольку скорость звука и света общеизвестна ещё по школьным урокам физики, определение расстояния, сводиться к банальному делению.


Например, свет проходит 1 см за 29.2 мкс, а выпущенный нами луч, вернулся через 292 мкс. Следовательно, для получения расстояния, делим 292 на 29.2 и получаем 10 см, которые делятся ещё пополам, поскольку луч проходит один путь дважды (от излучателя и к нему). В результате такой элементарной формулы, определяется расстояние, выводимое на дисплей устройства.
Пассивные – производят вычисления на основе равнобедренного треугольника, где искомое расстояние является его высотой (h), а длина основания заведомо известна. Данный принцип с формулой расчета, представлен ниже и лежит в основе оптических, монокулярных, нитяных и стереоскопических дальномеров. Подобные устройства применяются в геодезии, охоте, спорте и туризме, где измерения начинаются от 500 метров и переваливают за 2 километра. В данной статье, дальномеры пассивного действия, представлены для ознакомления, как крупная группа измерительных устройств. В точных строительных работах, такие устройства, не используются.
Поскольку тема статьи посвящена разбору простых и компактных измерительных приборов для строительства, заострим внимание именно на них. Лазерный дальномер предназначен для исключительно точных измерений с погрешностью 1-3 мм, на 5-10 метров (в зависимости от модели). Инструмент успешно используется в строительстве, монтаже и ремонте.
Принцип действия лазерной рулетки может быть основан на импульсном или фазовом методе. Первый, вычисляет расстояние на основе времени прохождения импульса от дальномера к поверхности и обратно. Фазовый метод измерения устроен сложнее и основан на различии испускаемых и принимаемых лучей. Такие дальномеры определяют расстояние немного дольше импульсных, но получают более точные показания и стоят дешевле.

Конструкция лазерного дальномера

Имея даже поверхностное понимание, что такое лазерный дальномер, можно с уверенностью заключить, что при всем многообразии расцветок и элементов оформления, прибор практически всегда выполняется в единой концепции. Визуально и по габаритам, устройство схоже с кнопочным мобильником с лазерным излучателем на верхнем торце (где, на Nokia 1616, расположен фонарик). Правда, в отличии от разнообразных форм телефонов, корпус лазерной рулетки зачастую имеет меньше округлых или кривых граней. Ровность кирпича и полная перпендикулярность боковых граней корпуса исходящему лучу, необходима для удобства измерения.
Бюджетные устройства, зачастую оснащаются LCD-дисплеями с подсветкой, где может отображаться от одной до 4-х строк данных и различные элементы (индикатор батареи или активированная функция). Более дорогие устройства имеют жидкокристаллические дисплеи с приличной гаммой цветов, использующихся для элементов интерфейса и функции визира со встроенной камерой.
Количество кнопок на панели зависит от функционала, и составляет от 2 до 10 и более. За измерение, в большинстве случаев, отвечает центральная кнопка, выделяющаяся от остальных. Далее по распространенности идет кнопка выключения и стирания данных. На более продвинутых аппаратах, есть кнопки сохранения и загрузки измерений, сложение и вычитание, подсветка и управление многочисленными возможностями, которые разбираем ниже.

Функционал

В эпоху технологического прогресса наивно полагать, что возможности лазерного дальномера ограничатся одним лишь измерением расстояния. Даже относительно недорогие устройства включают в себя приличный арсенал формул и модулей, позволяющих определять периметр, площадь и даже объем исследуемых объектов. Простые приборы, с единственной функцией измерения, тоже встречаются, но даже в самом бюджетном сегменте попадаются все реже. Наибольшее количество возможностей сосредоточено в профессиональных дальномерах, представляющих собой сконцентрированную кладезь теорем, для разнообразных расчетов. Далее конкретно о каждой функции.
Площадь и объем могут вычисляться стандартным способом, путем измерения каждой грани прикладыванием прибора, или же из одной точки со стороны. Функция полезна для отделочных работ, поскольку значительно облегчает и ускоряет расчет количества требуемого материала.
Уровень пригодиться для самых разнообразных строительно-монтажных и ремонтных работ. Оснастка может быть выполнена в роли обычного ватерпаса, установленного на корпусе инструмента или в качестве внутреннего модуля, выводящего градус угла на дисплей.
Скобы откидного типа позволяют производить диагональные измерения из углов, где невозможно плотное прилегание корпуса дальномера. В некоторых моделях, данную функцию выполняют выдвижные штыри, располагающиеся внутри корпуса.
Сохранение данных значительно облегчают работу с большими проектами, избавляя от необходимости ведения записей в блокноте. Возможность, в любой момент, поднять десяток-другой старых замеров, может выручить как на рабочем месте, так и в магазине стройматериалов.
Передача данных на пк или смартфон, в основном осуществляется через кабель, однако все больше моделей начинают оснащаться Bluetooth-модулем. Измерения могут передаваться в стандартных текстовых форматах, или загружаться в специальные программы, где могут быть преобразованы в полноценный чертеж проекта.
Непрерывное измерение превращает дальномер в настоящую лазерную рулетку, обновляющую расстояние до цели в режиме реального времени. Функция позволяет легко отмерять части нужной длины и помогает проверять неровности покрытия.
Визир представляет собой увеличительную оптику, для точного наведения луча на расстояния более 15 метров. В профессиональных моделях, функция имеет вид камеры, выводящей на дисплей картинку с точкой прицела посередине.
Измерение высоты позволяет получить точные данные о размерах дома или длине дерева, при измерении со стороны. Достаточно отмерить расстояние от дальномера до основания, и до конечной точки. На основе полученных данных и углов, устройство рассчитывает высоту. Для максимальной точности, подобные измерения рекомендуется производить на неподвижном штативе, с использованием визира.

Как пользоваться лазерным дальномером

Первоочередная задача любого лазерного дальномера, сводиться к упрощению и ускорению процесса измерения. Производители стараются сделать эти приборы максимально удобными и интуитивно понятными, однако большинство моделей имеют уникальный дизайн со своей системой управления, требующей индивидуального ознакомления. Для облегчения изучения, каждое устройство комплектуется руководством, объясняющим, как пользоваться лазерным дальномером конкретной модели. К сожалению, не каждый мануал имеет наглядное, подробное написание на русскоязычном языке, поэтому разберем основные кнопки и команды, за которые они отвечают.
Вне зависимости от модели прибора, в его арсенале есть как минимум 2 кнопки: для измерения и для отчистки дынных, которая зачастую отвечает ещё за выключение аппарата. Чем модель более наворочена, тем объемнее клавиатура. Со сложностью появляются кнопки подсветки, сложения / вычитания результатов, нахождения площадей и объемов, сохранения данных. На устройствах с интерфейсом имеются кнопки навигации по меню. Для большей наглядности, ниже представлена инструкция на лазерный дальномер на примере 2-х разных приборов.
Главный обобщающий фактор, единственный, неизменный для всех моделей, заключается в принципе эксплуатации устройства. Нулевая точка отсчета расстояния, приходиться на нижний торец прибора. К примеру, чтобы измерить расстояние между стенами, прикладываем прибор перпендикулярно одной, чтобы лазерный луч был направлен на другую. Если требуется получить размер доски, совмещаем край инструмента с краем измеряемого объекта, с противоположной стороны которого ставим любой элемент отражения лазерного луча. Для получения площади, измеряем помещение в длину и ширину, перемножая полученные данные, а при необходимости, умножаем на высоту, для вычисления объема. Основы эксплуатации дальномера, наглядно продемонстрированы в видеоролике, приведенном ниже.

Сохраните эту страницу в своей соц. сети и вернитесь к ней в любое время.

как выбрать электронную (цифровую) рулетку для строительства, как работает, как пользоваться

Лазерная рулетка незаменима в строительстве и отделке, туризме и лесничестве, во многих других отраслях. Ею можно производить замеры не только в помещениях, но и на улице. Ведь максимальная дальность измерения достигает 250 метров, а с использованием отражателя 900 метров. В отличие от обычной рулетки, электронная измеряет точнее, быстрее и без помощи второго человека. Как правильно выбрать строительный лазерный дальномер?

Устройство и принцип действия лазерной рулетки

Лазерная рулетка представляет собой небольшой прибор, состоящий из оптических и электронных компонентов.

Устройство лазерной рулетки

Устройство лазерной рулеткиУстройство лазерной рулетки

Устройство лазерной рулетки

  1. Корпус. У большинства приборов он сделан из пластика и имеет эргономичные вставки. Корпус защищает устройство от влаги и пыли.
  2. Излучатель сигнала.
  3. Приёмник сигнала.
  4. Преобразователь сигнала. Находится в корпусе. Преобразует световой формат в цифровой.
  5. Дисплей. На него выводятся полученные данные. Выполнен на жидких кристаллах. Для хорошей видимости в дневное время дисплей имеет сильную подсветку.
  6. Электронный блок управления. Расположен внутри корпуса.
  7. Аккумулятор.
  8. Панель управления с кнопками.

Лазерная рулетка не измеряет расстояние в буквальном смысле. Она обрабатывает полученные данные, преобразуя их в расстояние.

Схема работы лазерного дальномераСхема работы лазерного дальномера

Схема работы лазерного дальномера

Принцип действия прибора заключается в следующем:

  1. Пользователь нажимает на кнопку;
  2. Прибор генерирует световой поток и с помощью излучателя посылает его в прямом направлении;
  3. Дойдя до цели, луч возвращается обратно, попадая в приёмник;
  4. Преобразователь конвертирует световой поток в цифровой сигнал;
  5. Процессор вычисляет расстояние исходя из времени прохождения луча туда и обратно, и скорости движения;
  6. Полученный результат выводится на дисплей. Скорость обработки данных у бытовых приборов до 3 секунд, а профессиональные срабатывают за долю секунды.

Функции и применение строительного дальномера

Лазерная рулетка не только измеряет расстояния, но и выполняет другие функции, в зависимости от модели:

Включение в прибор дополнительных функций увеличивает его стоимость.

Видео: обзор функций дальномера для строительства

Применение лазерного дальномера достаточно широко:

  • строительство;
  • ремонт и отделка помещений;
  • производство и монтаж мебели;
  • монтаж оборудования;
  • топографическая съёмка;
  • геодезия;
  • ландшафтный дизайн;
  • туризм и альпинизм;
  • лесничество и охота;
  • геология и археология;
  • монтаж рекламных плакатов.

Как выбрать электронную рулетку

При выборе лазерной рулетки определите задачи, для которых вы будете её использовать, чтобы не переплачивать за наличие всевозможных функций прибора. Основные критерии выбора:

  • класс прибора:
    • бытовой. Дальность действия до 60 метров. Погрешность измерений 1,5 мм. Для замеров в квартире, частном доме или дачном участке этого вполне достаточно;
    • профессиональный. Дальность действия до 250 метров и выше. Погрешность достигает 1 метра;
  • класс лазера:
    • 1-й класс имеет луч мощностью менее 1 мВт. Цвет зелёный и хорошо виден и безопасен для глаз. Такой тип лазера используется в профессиональных дальномерах;
    • 2 класс имеет луч мощностью 1 мВт. Цвет красный. Опасен для человеческого глаза. Используется в бытовых дальномерах;
  • наличие оптического прицела или визира. На бытовых приборах устанавливается редко;Дальномер с оптическим прицеломДальномер с оптическим прицелом

    Дальномер с оптическим прицелом

  • количество начальных точек отсчёта. Это точки, от которых начинается замер. Их может быть от 1 до 4;
  • корпус и линзы. На профессиональных устройствах корпус имеет защиту от влаги и пыли. Линзы невосприимчивы к высокой влажности и не запотевают. Такие приборы работают при температурах ниже 50 и выше 50 градусов;
  • эргономичные вставки и противоударный буфер. Для того чтобы прибор не выскальзывал. Ну а если это произошло, чтобы не разбился. Для стройки полезная опция;
  • производитель. Очень качественные дальномеры производят Bosch, Stabila и Leica. Среди китайских фирм пользуются спросом ADA и Condtrol;
  • гарантия и сервис. Гарантия должна быть не менее 1 года. Также уточняйте наличие сервисной мастерской в вашем городе.
  • комплектация. Некоторые модели комплектуются штативом или очками.
  • наличие дополнительных функций. В зависимости от вида работ выберите функции, которые должны присутствовать в вашей рулетке.

Для строительства простых измерений расстояния, площади и объёма не достаточно. Присмотритесь к профессиональным приборам с расширенным функционалом.

Как пользоваться цифровым измерительным устройством

Лазерные рулетки разных моделей отличаются функционалом. Рассмотрим самые распространённые варианты используемых функций.

Кнопки панели управления

Кнопки панели управленияКнопки панели управления

Кнопки панели управления

  • 1 — кнопка включения прибора и запуска измерения;
  • 2 — кнопка активации цифровой камеры;
  • 3 — крестообразный джойстик. В центре расположена кнопка ввода действия и знака «равно»;
  • 4 — кнопка отмены действия и выключения прибора;
  • 5 — с помощью этих кнопок можно запрограммировать часто используемые функции. По одной функции на каждую кнопку;
  • 6 — переход к просмотру и выбору функций;
  • 7 — кнопки для простого сложения и вычитания.

Основные действия:

Рекомендации по использованию

  • Если у вас нет оптического или цифрового визира, купите очки для лазерных приборов. С их помощью вы сможете видеть луч днём.
  • Так как лазерные рулетки часто используются на строительных площадках, на них попадает много пыли. Поэтому прибор нужно протирать в конце работы. Хранить в сухом и чистом чехле.
Видео: как пользоваться электронной линейкой при строителных работах

Лазерная рулетка многофункциональна и удобна. Проста в использовании. Имея в арсенале такой прибор, вы сможете быстро произвести замеры для стройки или ремонта. Вам не придётся вручную высчитывать площади. При правильном выборе строительного дальномера со всеми необходимыми функциями вы получите незаменимый инструмент.

Строительные лазерные дальномеры (рулетки): виды, функционал, характеристики


Если в распоряжении строителя есть точный и компактный прибор — дальномер цифровой, выполнение измерительных манипуляций занимает несколько секунд. При этом точность полученных данных будет 100%. Современные устройства подобного типа имеют дополнительные функции — позволяют в полевых условиях произвести необходимые замеры и расчеты, выполнить вычисления, переслать данные на планшет или телефон. В продаже имеется большой ассортимент приборов, которые различаются по своей функциональности и характеристикам.

Что такое дальномер и как он работает

Лазерные линейки – оптические устройства, позволяющие быстро измерить расстояние до объекта. Цифровой дальномер работает по принципу генерации светового импульса и анализа периода их отражения от противоположной поверхности. После того, как устройство получает данные, рассчитывается дистанция, которую преодолел луч лазера.
Если человек занимается строительством или монтажными работами, то лучше купить профессиональный лазерный дальномер со всеми необходимыми опциями по цене от производителя. С лазерными дальномерами работать намного проще, он не требует специальных навыков от оператора и может самостоятельно вывести вычисления на экран прибора.

Виды лазерных дальномеров

Существует две подкатегории дальномеров, различные по принципу работы:
Активные – объектив направляется на точку, и производится звуковой либо световой луч. Достигнув противоположной поверхности он отражается. Электронный дальномер улавливает волну и самостоятельно рассчитывает дистанцию на основе временного промежутка, который был потрачен на передвижение сигнала.
Пассивные – работают по геометрическим законам и не посылают никаких сигналов. Измерение расстояний основано на определении высоты h равнобедренного треугольника ABC, например, по определенной заранее стороне AB = l (базе) и противоположному острому углу b. При небольших углах b – формула h = l/ b (2.1). При этом первая величина является постоянной, а вторая переменной.
К активным приборам относится электронная рулетка дальномер – они делятся на два вида, которые различны по принципу осуществления замеров.

Импульсные

Прибор генерирует луч, который отражаясь, попадает на детектор. Расстояние до объекта рассчитывается по следующей формуле: время прохождение луча умножается на скорость света и делят на 2.
Дальнометрия, как и гидролокация работает по трем принципам:
  • Первый принцип – формируются электромагнитные волны оптического диапазона, которые отражаются, если на пути встречается какое-либо препятствие. Объект обнаруживается благодаря контрасту падающего излучение от фона и объекта.
  • Второй принцип – импульсный лазерный дальномер работает на основе оптической локации, которая использует направленное излучение. Расстояние до объекта определяется путем направления энергии в область его предполагаемого нахождения. Чем тоньше пучок энергии, тем точнее будет рассчитано направление.
  • Третий принцип – использование электромагнитных колебаний, которые излучаются с неизменной скоростью. Удаленность объекта, определяется, посредством длинны распространения волн определенной траектории. Особенность данного метода заключается в том, что для расчета расстояния используются короткие импульсы – строительный лазерный дальномер обладает этими функциями, что делает его востребованным у профессионалов.

Фазовые

Данный тип измерительных лазерных приборов основан на сравнении фаз отправленного и возвращенного сигнала. Лазерный длиномер отличается не только доступной стоимостью, но и повышенной точностью замеров. Большинство ручных строительных измерительных устройств являются фазовыми.
Стоит отметить, что такие дальномеры могут выдавать ошибку на долю модуляции длины фазы, поэтому они более точные по сравнению с импульсными приборами. А за счет того, что у устройства нет сверхточного таймера его стоимость доступна широкому кругу потребителей. Однако дальность работы зависит от мощности, которая необходима для длительной подсветки.
Мощностью луча управляет ручной дальномер, при этом не изменяя длину волны. Моделирующий сигнал не превышает частоты 500 МГц. Если говорить простым языком, то из устройства отправляется сигнал в одной фазе, а возвращается в другой.

Характеристики устройств

При применении измерительного устройства в помещении, оно может снимать различные показатели: от стены к стене либо от потолка до пола, он имеет следующие характеристики:
  1. Измерительный диапазон – 0.05-60 или 0.05-200 м. в зависимости от модельного ряда, последнее значение имеют новые современные устройства.
  2. Погрешность зависит от класса модели. Например, точность простого бытового дальномера составляет ±2 мм, а профессионального ± 0.5 мм.
  3. Вес, в зависимости от конкретной модели может быть от 0.1 до 0.3 кг.
  4. Мощность и длина луча— обычно она достигает 635-650 нанометров, при мощности — 1 мВт. этот лазер относится ко 2 классу и используется практически во всех приборах бытового назначения. Стоит такая аппаратура недорого.  Лучи с меньшей мощностью, чем 1 мВт относятся к 1 классу и применяются в профессиональных лазерных рулетках и относятся к более высокому ценовому сегменту.

Помимо этого, портативный дальномер имеет дополнительные свойства:
Кроме простого замера длины, базируемого на импульсном излучении и приема отражения луча от противоположной плоскости, он может осуществлять измерения, построенные на геометрических вычислениях.
Может определять площадь здания с помощью аксиомы Пифагора, даже если помещение не поддается прямым замерам.
Некоторые модели способны измерить высоту объекта по двум параметрам, сделанным из 1 точки.
Большинство измерительных приборов могут рассчитывать объем объекта по результатам 3-х измерений: длины, ширины и высоты.
Есть возможность выполнить промеры из нескольких позиций: измерить ширину дверной конструкции от задней стенки устройства, определение от кромки опорного штифта, при определении параметров от угла до труднодоступных объектов.
Некоторые лазерные рулетки производят вычитание либо сложение результатов замеров. Они могут функционировать в режиме дискретных и непрерывных измерений. При этом устройство может перемещать луч приближать и удалять его пока не найдет нужного расстояния.

Дополнительные возможности

У каждого устройства есть определенные опции, самое большее их количество имеет профессиональный лазерный дальномер:
Измерение площади и объема – дальномер способен вычислить эти параметры по различным формулам. Часто для этого достаточно сделать замеры всего с двух точек, устройство самостоятельно делает расчет и выводит результат на дисплей.
  • Функция маляра – применяется для точного расчета отделочного материала. Замеряют длину всех стен в комнате и высоту – прибор выдает точное значение, которое потом применяется для расчетов.
  • Максимальное/минимальное расстояние – лазерный дальномер с визиром может точно определить данные параметры, при этом 1 значение целесообразно при измерении диагонали, а 2 – при высчитывании перпендикуляра относительно стены в помещении.
  • Оптический визир – это дополнение, которое позволяет видеть точку луча, направленного на поверхность. Может быть выполнен в виде цифрового дисплея.
  • Функции измерения трапеции – дальномер сам рассчитает длину одной стороны, если предварительно промерить три стороны, которые расположены под прямым углом по отношению друг к другу. Результат выводится на дисплей.
  • Треккинг – программа, позволяющая выполнять расчеты во время движения устройства.
  • Угломер – прибор, который способен определить угол наклона. Функция необходима, если приходится часто работать с различными наклонными поверхностями, например при обустройстве перил лестниц.

Есть еще несколько особенностей, о которых стоит упомянуть, они скорее конструкционные. Современные профессиональные устройства позволяют определить точку отсчета. Можно отрегулировать аппаратуру на работу от верхней/нижней части корпуса, складной стойки или от разъема штифта. Отлично подходит для измерения диагонали.
Также стоит отметить, такое устройство, как лазерный дальномер с блютузом – это аппарат, который можно использовать со специальными программами. Им управляют с планшета или телефона удаленно, и составлять полный план помещения. Кроме этого числовые значения можно добавлять на фотографии объекта и составлять чертежи.
Лазерные дальномеры помимо функционала, обладают большим перечнем дополнительных опций, которые используют в различных строительных сферах. Выбрать устройство по своим требованиям на рынке не составит труда. Покупая лазерный дальномер обратите внимание на функциональность аппарата, его дополнительные возможности, мощность аккумулятора и процессора. Покупая лазерную линейку для дома, можно остановиться на недорогих бытовых моделях с минимальным набором опций. Профессиональным строителям, которые часто применяют в своей работе измерительные приборы, лучше купить современный дальномер с максимальной функциональностью.

Сохраните эту страницу в своей соц. сети и вернитесь к ней в любое время.

Как выбрать и правильно использовать лазерный дальномер

Одной из самых важных работ во время строительства является проведение измерений. Во время ремонта тоже не обойтись без точных показателей длины и ширины материалов, расстояний от одной стены до другой. Если для правильного расчета длины обоев достаточно рулетки, то для измерения протяженных расстояний придется прибегнуть к помощи лазерного дальномера, специального устройства для получения точных данных о протяженности заданного отрезка.

Принцип работы и функционал лазерного дальномера

Технически лазерный дальномер представляет собой устройство, сочетающее в себе функционал строительной рулетки и простейшего калькулятора. Однако, преимущества лазерного дальномера перед этими инструментами очевидны.

  • При помощи дальномера вы парой движений измерите периметр участка, объем емкости или площадь поверхности. Достаточно измерить длину, ширину и высоту, а остальные вычисления машина сделает самостоятельно.
  • Инструмент имеет возможность сохранять в памяти предыдущие измерения, для сравнения с последующими или проведения простейшим математических операций.
  • Лазерный дальномер дает возможность проводить измерения отдаленных объектов, не прибегая к помощи дополнительных инструментов.
  • Механическое устройство надежно защищено от воздействия внешней окружающей среды, благодаря чему область применения лазерного дальномера не ограничена только лишь внутренними работами.

Принцип работы лазерного дальномера прост и состоит из нескольких этапов, выполняемых за короткий промежуток времени. Специальное устройство, именуемое излучателем, генерирует инфракрасный лазерный луч, который устремляется в ту сторону, в которую направлен дальномер. Сталкиваясь с препятствием на своем пути, луч разворачивается и возвращается назад, где улавливается другим устройством, отражателем. Далее микропроцессор, установленный в дальномере, конвертирует полученную информацию о скорости луча и времени прохождения траектории в нужный нам параметр расстояния. Для получения точных измерений используется штатив (удерживающий дальномер неподвижно), визир (позволяющий приблизить нужную точку) и ватерпас (контролирующий положение дальномера в пространстве).

Характеристики лазерного дальномера

К основным критериям выбора лазерного дальномера относятся следующие технические характеристики устройства:

  • Максимальная дальность измерений. Чем большее расстояние требуется измерить, тем мощнее потребуется лазерный луч. Средний диапазон дальности измерений колеблется от 15 м до 1,5 км. Однако, аппараты, способные измерять расстояние от 1 км и выше, являются профессиональными, производить измерения возможно только со штатива.
  • Погрешность измерений. Вне зависимости от класса дальномера, максимальная погрешность равна 3 мм.
  • Точки отсчета. По умолчанию точка отсчета измерения падает на место начала лазерного луча, передняя стенка прибора. Профессиональные модели дают возможность переключить точку отсчета на заднюю крышку или на место соединения со штативом.
  • Встроенный прицел. Удобное усовершенствование, помогающее приблизить место попадания луча, чтобы быть уверенным в правильности направления.

Правила использования лазерного дальномера

С измерением расстояния лазерным дальномером справится даже новичок в строительном деле. Порядок использования инструмента включает в себя несколько шагов:

  • Включите аппарат, установите необходимые настройки. К обязательным настройкам относится выставление единиц измерения и точки отсчета, если выбор точки предусмотрен конкретной моделью.
  • Установите прибор на ровную поверхность, исключите колебание и шатание основания.
  • Направьте прибор на нужный объект, проведите измерения и запишите получившийся показатель с экрана дальномера.
  • Если измерения проводятся на открытой территории, используйте штатив для получения наиболее точных показаний.

При работе с лазерным дальномером помните и о технике безопасности: кажущийся простым, прибор может нанести вред здоровью при неумелом его использовании. Никогда не заглядывайте в излучатель и не направляйте прибор на людей и животных, лазер способен повредить сетчатку глаза. Для увеличения срока службы дальномера, берегите аппарат от попадания на него воды и открытых солнечных лучей.

В завершении статьи поделюсь секретом от профессиональных строителей. При выполнении измерений в яркую солнечную погоду, воспользуйтесь темными солнечными очками, так проще увидеть луч и собрать правильные показания прибора.

05.12.2017

Подписаться на рассылку

Дальномер. Виды и работа. Применение и как выбрать. Особенности

Дальномер – это прибор, предназначенный для определения расстояния между наблюдателем и удаленным объектом без необходимости приближаться к нему. Он широко используется в геодезии, а также в строительстве, топографии и прочих сферах. Также дальномерами пользуются военные для корректировки огня со снайперского оружия и минометных установок.

Кому пригодится дальномер, и его преимущества над измерительной рулеткой

Применение дальномеров имеет массу преимуществ над традиционными измерительными линейками и рулетками, поскольку дает возможность получить точные данные о расстоянии к объекту за считанные секунды. При этом оператор использующий прибор может находиться на одном месте. Это намного удобней и быстрее. При этом получаются точные показатели с минимальной погрешностью. К примеру, если измерять расстояние между двумя объектами на ландшафте, то при применении обыкновенной измерительной рулетки может возникнуть большая погрешность в связи с наличием на траектории движения неровностей и углублений. Дальномеры проводят измерения по идеально прямой линии, сводя на нет факторы, влияющие на точность.

Применение подобного оборудования в быту неоправданно. Его могут использовать строители, но только те, которые занимаются возведением зданий, а не внутренней отделкой. Стоимость подобного инструмента, а также затраты времени на его выставление, делают его применение для монтажной разметки на стенах неактуальным. В том же случае если необходимо обозначить границы для заливки фундамента или рытья большого котлована для крупных зданий, тогда естественно дальномер будет намного удобнее, чем рулетка.

Также дальномеры часто используют фотографы, которые предпочитают снимать пейзажи. Интересует это оборудование и астрономов, геодезистов, военных и мореплавателей. Это сугубо профессиональный инструмент, который не стоит покупать любителю, планирующему его использование от случая к случаю.

Виды дальномеров по принципу работы
По принципу работы существующие конструкции дальномеров разделяют на две категории:
  1. Активные.
  2. Пассивные.

Активные наводятся объективом на точку, к которой необходимо измерить расстояние, после чего отправляют на нее световой или звуковой сигнал. Достигнув поверхности предмета, тот отражается и возвращается обратно. Чувствительный элемент прибора улавливает волну и рассчитывает расстояние к объекту на основе времени, которое ушло на ее передвижение.

Активные дальномеры бывают следующих видов:
  • Звуковые.
  • Световые.
  • Лазерные.

Что касается пассивных, то они не посылают никаких сигналов. Определение расстояния осуществляется по совершенно другому принципу. Такие инструменты работают по законам геометрии. С помощью пассивных приборов осуществляется вычисление построенного равнобедренного треугольника, по параметрам которого можно высчитать расстояние.

Пассивные дальномеры бывают:
  • Оптические.
  • Нитевые.
Ультразвуковой дальномер

Является самым неточным устройством, работающим по активному принципу. Это оборудование имеет схожий метод с тем, что используют для ориентирования дельфины или летучие мыши. Прибор создает звуковую волну, направленную вперед на объект, к которому нужно померить расстояние. При достижении импульсом преграды создается эхо, которое отбивается и попадает на чувствительную часть ультразвукового устройства.

Такие приборы используют звук с высокой частотой около 40 Кгц. Он неуловимый уху человека, поэтому применение подобного дальномера не вызывает никакого дискомфорта. Это сравнительно недорогие устройства, но чтобы ими воспользоваться, необходимо правильно направить импульс, на что уходит время. Конечно, рулеткой мерить намного дольше, но лазерные инструменты более совершенные, чем ультразвуковые.

Лазерный дальномер

Один из самых востребованных. Он направляет на объект пучок света, который отбивается и возвращается на чувствительный сенсор устройства. По тому времени, которое уходит на движение пучка света туда и обратно прибор автоматически рассчитывает дистанцию. Таким образом, оператор просто считывает готовые цифровые данные с дисплея.

Такие устройства могут комплектоваться лазером различной мощности. Дальность измерения зависит именно от яркости излучателя. В продаже можно встретить строительные дальномеры с диапазоном действия от 20 до 50 м. Также бывают более мощные устройства, которыми пользуются геодезисты. Лазерные приборы очень надежные, а главное могут ремонтироваться. Практически любая деталь, которая вышла из строя, может быть заменена в сервисном центре.

Лазерные дальномеры являются электронным устройством, которое нуждается в источнике питания. В качестве него может выступать встроенная аккумуляторная батарея или обыкновенные пальчиковые батарейки. В плане экономии лучшее устройство на аккумуляторе, которое можно заряжать от электросети. Себестоимость обеспечения его работы намного ниже, чем при периодической покупке батареек для смены.

Важным преимуществом, которым обладает лазерный дальномер, является возможность измерения расстояния к определенной точке. Инструменты прочих типов такой функции не имеют. Пучок лазерного луча очень тонкий, поэтому он доходит до требуемого участка объекта и отбивается от него обратно. Если поверхность является рельефной, к примеру отвесная скала, то только такое устройство даст возможность получить точные данные.

При использовании лазерного дальномера для измерения расстояния от очень удаленных объектом в несколько сотен метров устройство должно закрепляться на штативе. Дело в том, что дрожание рук при столь значительной дистанции не позволит оборудованию уловить отраженный сигнал, а также изначально направить его прямо в цель. Если же прибор будет закреплен неподвижно, то это позволит избежать подобных факторов влияющих на погрешность.

Точность измерения лазерным дальномером во многом зависит от условий, в которых осуществляется работа. Под открытым небом при хорошем солнечном освещении устройство теряет свою чувствительность, особенно если приходится действовать на большие дистанции. Также оно плохо работает в туман, но эта проблема присуща всем типам дальномеров, поскольку для них нужна прямая видимость.

Оптический дальномер

Работает по пассивному принципу. Такие устройства часто используют геодезисты, поскольку инструмент поддерживает измерения на дальние расстояния. При необходимости осуществлять топографические работы лучше выбрать оборудование этого типа. Такие приборы работают по всем известной теореме Пифагора, которая является одной из самых главных в геометрии.

Подобные инструменты не имеют датчика, который автоматически определяет расстояние. Смотря в окуляр оптического дальномера нужно визуально зафиксировать данные специальной шкалы, поэтому получение погрешности является неизбежной.

Хотя оптические дальномеры и весьма удачный вариант для дальних измерений, но если нужно померить дистанцию до отвесного объекта с рельефной поверхностью, к примеру отвесной скальной стены, то при взгляде через зрительную трубку данная поверхность будет выглядеть обычной плоскостью. В результате полученные параметры дистанции будут иметь значительную погрешность и показания расстояния в целом, а не к определенной точке отсчета.

Оптические дальномеры бывают монокулярными и стереоскопическими. Их принцип работы немного отличается, поскольку первые позволяют вычислять расстояние используя геометрические формулы для прямоугольного треугольника, а вторые для равнобедренного. Монокуляр стоит дешевле, чем дальномер с двумя зрительными трубками. Кроме этого он менее удобен, поскольку вызывает утомление оператора. Смотреть через стереоскопические дальномеры комфортнее, а кроме этого они способны определить расстояние до движущегося объекта.

Нитевый дальномер

Работает схожим принципом с оптическим. Для осуществления измерения применяются геометрические вычисления. Устройство применяется со специальной рейкой с нанесенной на нее шкалой делением в 2 см. Она переносится к той точке, до которой необходимо измерить расстояние. Планка устанавливается горизонтально. Она укапывается в грунт или поддерживается специальными подставками. В крайнем случае ее может удерживать напарник руками. После того как рейка установлена необходимо вернуться к точке от которой нужно провести измерение и посмотреть на шкалу планки через объектив устройства. Его зрительная труба имеет установленные тонкие горизонтальные нити. Просматривая через глазки дальномера нужно подсчитать, сколько делений на шкале планки помещается между двумя линиями. После получения данных остается провести расчет по специальной табличке или формуле, в зависимости от желания.

Такое оборудование является довольно точным, но весьма неудобным. Дело в том, что при его применении в любом случае придется отправиться к объекту, к которому нужно померить дистанцию, чтобы установить рейку со шкалой. После необходимо будет вернуться к устройству и посмотреть через зрительную трубку. Если речь идет о расстояниях в несколько сотен метров, то подобные переходы заберут много времени и сил. В связи с этим специалисты, которые пользуются подобными дальномерами, обычно действуют с напарником. Оборудование других типов позволяет работать одному.

Похожие темы:

Как работают дальномеры? — PrecisionRifleBlog.com

Поняв, как работают дальномеры, вы сможете более умело использовать их в полевых условиях. Эта статья должна вооружить вас основными принципами.

Лазерные дальномеры

(LRF) работают по одной и той же базовой концепции. При нажатии кнопки дальномер излучает лазерные лучи. Эти лучи отражаются от далеких объектов, а высокоскоростные часы дальномера измеряют общее время, прошедшее с момента выхода лучей из устройства до их возвращения.Поскольку мы знаем, с какой скоростью перемещался луч (скорость света), устройство может просто использовать это измерение времени для расчета пройденного расстояния, а затем отображает расстояние до пользователя.

Хотя все лазерные дальномеры работают по одним и тем же принципам, есть много возможностей для инноваций в деталях реализации. Недавно я рассмотрел 8 лучших лазерных дальномеров, используемых для охоты и стрельбы на дальние дистанции, и был шокирован тем, насколько сильно различались их характеристики.

Производительность дальномера зависит от многих факторов, но вот самые большие различия между дальномерами при использовании их для стрельбы на большие расстояния или охоты. Я коснусь большинства из них более подробно в статье. Особая благодарность Майку из Vectronix за то, что он обсудил это со мной и так много подумал над этим списком.

  • Способность засечь цель — это качественная оптика с подходящим увеличением. Вы не сможете определить расстояние до цели, если не можете ее найти.Большинство стрелков выбирают 8-кратное или 10-кратное увеличение. Выполняя полевые испытания дальномеров, мы искали в поле цели с 5-кратным увеличением и думали, что нашли все цели. Однако после повторного поиска с 10-кратным увеличением мы сразу же увидели еще одну цель, которую мы полностью пропустили с 5-кратным увеличением. Но, как я уже упоминал в других постах, действительно хорошее стекло иногда может компенсировать увеличение. Я могу увидеть больше деталей на цели в 2000 ярдов, используя зрительную трубу Leica 45x, чем зрительную трубу Bushnell 60x.Дело в том, что стекло качества и соответствующее увеличение имеют значение , и вы не можете полностью игнорировать то или другое.
  • Способность получать энергию лазера на цель — Это во многом связано с расходимостью луча, которая является описанием того, насколько «сфокусирован» луч. Есть несколько компромиссов между очень малым или большим расхождением луча, о которых мы поговорим позже в этой статье. Также может быть различие в качестве передаваемых лазерных импульсов с точки зрения типа, длины волны и резкости… хотя эти вещи может быть очень трудно определить количественно.
  • Размер апертуры приемника — это размер отверстия в оптике приемника, которая фиксирует обратные показания и отправляет их на фактический датчик. Большая апертура может иметь огромное влияние на то, сколько возвращаемых данных способно собрать устройство, что может позволить устройству работать на больших расстояниях, а также может помочь в разрешении / точности измерений на меньшем расстоянии.
  • Как прибор анализирует результаты — Существует много различий между тем, как дальномеры интерпретируют показания после их получения, и некоторые из них намного умнее других.Старые модели просто отображали первое показание, которое возвращалось на устройство, но многие современные дальномеры используют «многоимпульсную технологию». Такой подход испускает серию из сотен или даже тысяч небольших лазерных импульсов за чрезвычайно короткий период времени. Затем он собирает большой размер выборки показаний, затем анализирует эти результаты, чтобы выявить / игнорировать выбросы (например, кисть, туман, дождь) и с большей уверенностью определить показания, которые вы собираетесь варьировать. Увеличение количества испускаемых лучей также может повысить вероятность того, что вы получите показания небольшой и / или неотражающей цели.Логика и алгоритмы, используемые для определения того, что показывать пользователю, могут иметь большое влияние на то, насколько хорошо работает дальномер.

Расходимость луча — возможность получить лазерную энергию на цели

Расходимость луча, также называемая дисперсией луча, представляет собой угловое измерение (обычно в миллиметрах) того, насколько «сфокусирован» лазерный луч. Меньшая расходимость луча обеспечивает большую точность измерения дальности и большее максимальное расстояние в большинстве ситуаций. Для дальномеров аналогичного качества расходимость луча может быть основным показателем эффективности дальномера.Если вы можете сфокусировать 100% лазерной энергии на намеченной цели, у вас будет гораздо больше шансов получить с нее несколько показаний. Однако, если дальномер умен в том, как он анализирует показания, он может компенсировать неидеальную расходимость луча … поэтому вопреки распространенному мнению, расходимость луча — не единственный фактор, который следует учитывать.

Rangefinder Beam Divergence Diagram

Чтобы понять расходимость луча, представьте, что выстрелите из двух винтовок по цели на расстоянии 1000 ярдов. Одна из этих винтовок в среднем дает 2.5-дюймовые группы на 100 ярдов, а остальные — в среднем ½-дюймовые группы. Что из этого даст вам больше шансов поразить намеченную цель с расстояния 1000 ярдов? Теперь, если вы пытаетесь поразить 12-дюймовую цель на 300 ярдов, любая винтовка должна работать. Но по мере того, как вы увеличиваете расстояние (или уменьшаете целевой размер), меньшее расхождение становится критическим. То же самое и с расходимостью луча лазерных дальномеров. Если вы прицеливаетесь относительно больших (размером с оленей) целей на расстоянии менее 500 ярдов… вероятно, нет необходимости беспокоиться о расходимости луча.Но по мере того, как цели становятся все дальше или меньше, расхождение луча быстро становится критичным для точного определения дальности.

Я слышал о расходимости луча, достигающей 4 x 2 мил, а одна модель военного уровня, которую я тестировал, имела толщину менее 0,3 мил… так что есть большая разница между . Вот диаграмма, которая показывает, насколько большой может быть разница в расходимости луча на расстоянии 1000 ярдов.

Один из сценариев, в котором очень сильное расхождение луча может быть недостатком, — это попытка определить дистанцию ​​до удаленной цели (т.е.е. не поддерживается штативом). В этом случае движение, вызванное неподдерживаемым положением, может затруднить точное попадание в цель точно сфокусированным лучом. С другой стороны, если бы у вас был луч с большей расходимостью, вам было бы легче поразить цель даже при некотором колебании, а затем полагаться на «ум» дальномера, чтобы определить, что вы намереваетесь измерять в этом большом окне.

Я разговаривал с представителем Vectronix, и мы оба согласны с тем, что расходимость луча около 1.5 x 0,5 мил, вероятно, идеально подходит для целей в диапазоне от 500 до 2000 ярдов, хотя это не твердое правило.

Факторы, влияющие на диапазон измерения

Существует ряд факторов, которые влияют на то, насколько хорошо дальномер может работать, включая свойства цели, атмосферные условия и поддержку дальномера, и все они влияют на максимальную эффективную дальность действия устройства в данном сценарии. Вот очень полезная диаграмма, предоставленная Vectronix, которая иллюстрирует, что это такое:

Когда производители рекламируют дальномер с максимальным диапазоном дальности 1000 ярдов или 1 мили, вы обычно можете перевести это в значение, что существует вероятность , вы, , можете получить показания на таком расстоянии, но только в абсолютно идеальных условиях (e .г. при слабом освещении, без штатива, на очень большой отражающей цели). По моему опыту, вы обычно сможете получить показания только до 70-80% заявленного максимального расстояния в большинстве дневных условий (яркий свет) на отражающих целях 2 MOA.

Понимание того, что «видит» дальномер

Самый простой способ понять, как работают дальномеры, — это простой пример. На приведенной ниже диаграмме показана пара сложных ситуаций определения дальности, при этом каждая желтая цель выделена красным прямоугольником, который указывает на соответствующее расхождение луча при попытке определить дальность до этой цели.Вы можете видеть, что в каждой ситуации, вероятно, будут возвращены показания для дерева, цели, ближнего холма и дальнего холма.

Long-Range Rangefinder Beam Divergence

Следующие несколько иллюстраций показывают, что дальномер может «увидеть», когда пытается определить расстояние в одном из наших сложных сценариев. На первой диаграмме есть сетка чуть менее 200 прямоугольников. Вы можете думать об этом как обо всех лучах, испускаемых дальномером. Синие прямоугольники обозначают лучи, которые были отражены обратно в дальномер, который он смог записать как показания.Ячейки, которые не отмечены синим цветом, означают, что дальномер не получил показания от этого луча, что может быть связано с такими вещами, как плохая отражательная способность (например, дерево не отражает так же хорошо, как металлическая цель) и объекты под углом (например, холмы находятся под небольшим углом от пользователя, а не прямо перпендикулярно, как цель). Примечание. Этот пример предназначен только для иллюстрации теории и концепции работы дальномеров. В технических деталях легко потеряться, поэтому это упрощенный пример.

Rangefinder Beam Hits Example Closeup of Target

Вот вид сбоку той же цели, который показывает показания, полученные дальномером, и то, что эти лучи попали (щелкните изображение, чтобы увеличить).

Менее чем за полсекунды дальномер получит все показания и создаст график этих показаний, аналогичный показанному ниже. Это, по сути, представляет то, что «видит» дальномер или какие данные у него под рукой, чтобы принять решение о том, какое расстояние отображать пользователю.

Как дальномер анализирует результаты и решает, что отображать

Вот где становится интересно. Есть несколько способов, которыми дальномеры могут быть запрограммированы для определения, какие показания он должен отображать. Вот несколько наиболее распространенных.

  1. 1-е показание — Так работали старые дальномеры, и все еще есть несколько, которые используют этот простой подход. Когда устройство получает первый луч, отраженный обратно к нему (ближайшему объекту), он рассчитывает и отображает соответствующее расстояние.В нашем примере этот подход будет отображать 225 ярдов.
  2. Ближайший пик — похож на №1, но ищет ближайший пик вместо ближайшего одиночного показания. Такой подход может помочь отфильтровать «ложные» показания от таких вещей, как дождь или туман, которые более разбросаны по шаблону и на самом деле не приводят к пику. Может быть жестко запрограммированный «порог», который говорит что-то вроде «ищите первый всплеск, у которого есть как минимум два показания на одинаковом расстоянии». В нашем примере этот подход будет отображать 230 ярдов.
  3. Самый высокий пик — Это просматривает весь набор показаний и находит самый большой пик показаний для того же расстояния и предполагает, что это то, что вы собираетесь измерять. В целом это хороший подход, но он особенно полезен при определении расстояния до отражающих целей, перпендикулярных пользователю. В нашем примере при таком подходе будет отображаться 350 ярдов (наша предполагаемая цель).
  4. Самый большой кластер — этот подход также будет анализировать весь набор показаний и искать самую большую группу показаний.В нашем примере вы можете посмотреть на 350 ярдов и увидеть, что есть группа из 7 показаний рядом друг с другом (они попадают в цель, цель стоит и земля рядом с ней). Но если вы посмотрите на 650 ярдов, то увидите группу из 8 показаний рядом друг с другом (они попадают в дальний холм). Таким образом, подход будет отображать 650 ярдов.
  5. Самый дальний пик — Это похоже на №2, но ищет самый дальний пик. Этот подход полезен при попытке определить расстояние до цели, которая частично закрыта кистью.В нашем примере этот подход будет отображать 660 ярдов.

Разве не безумие, сколькими способами дальномер может интерпретировать результаты? Дело в том, что ни один из подходов не идеален в любой ситуации. . Я намеренно выбрал жесткий пример, который иллюстрирует слабые стороны каждого подхода, и хотя подход №3 дал нам диапазон до намеченной цели, я мог подумать о других сценариях, где подход с максимальным всплеском не дал бы правильного результата ( например, если цель не слишком отражающая или полностью перпендикулярна пользователю).

Большинство дальномеров жестко запрограммированы на использование единого подхода (обычно №1 или №2), но есть несколько моделей, которые становятся намного умнее в том, как они анализируют показания.

Разрешить пользователю определять наилучший подход

Бинокль Bushnell Fusion обеспечивает три различных режима, из которых пользователь может выбирать:

  • Нормальный — Это похоже на подход №3 или №4 и является их лучшим универсальным подходом.
  • BullsEye — аналогично подходу №2.В руководстве Бушнелла говорится: «Этот расширенный режим позволяет легко обнаруживать небольшие цели и играть без непреднамеренного увеличения расстояния до фоновых целей с более сильным сигналом. Когда было захвачено более одного объекта, будет отображаться расстояние до ближайшего объекта ».
  • Кисть — аналогично подходу №5. В руководстве Bushnell говорится: «Этот расширенный режим позволяет игнорировать такие объекты, как кисть и ветви деревьев, так что отображаются только расстояния до фоновых объектов.Когда было захвачено более одного объекта, будет отображаться расстояние до следующего объекта ».

На мой взгляд, эти «расширенные режимы» — новаторская функция, на которую другим производителям оптики следует обратить внимание. По сути, это позволяет пользователю «намекнуть» на то, какой подход даст им наилучшие шансы получить показания по их намеченной цели. В конечном счете, пользователь знает больше о конкретной ситуации, которую он пытается определить, например, если кисть частично закрывает цель, или он пытается определить расстояние до очень маленькой цели.Эти режимы просто предоставляют им возможность передать эту информацию дальномеру, чтобы он мог лучше интерпретировать результаты.

Недавно я провел комплексные полевые испытания нескольких биноклей-дальномеров и попытался определить расстояние до цели, изображенной на картинке ниже. Мишень представляет собой огромный 30-дюймовый квадрат, повернутый как алмаз, и находящийся всего в 360 ярдах. Несколько веток, которые частично закрывали цель, находились на расстоянии 103 ярдов. Я пробовал дальномеры Leica, Zeiss, Vectronix, Bushnell и Leupold, и почти все они давали мне показание только в 103 ярда.Новая пара Bushnell Fusion 1 Mile в режиме кисти большую часть времени давала мне показание в 360 ярдов. И хотя модель Vectronix Terrapin давала первичное показание только в 103 ярда, бинокль Vectronix Vector 23 каждый раз давал диапазон 360 ярдов. (Примечание: у Vectronix Terrapins есть функция «3 DIS», о которой я расскажу позже, которая позволила бы мне видеть показания на 360 ярдов.)

Tough Ranging Scenario With Partially Obscurred Target

Разрешить пользователю просматривать показания

Vectronix имеет функцию на всех своих дальномерах, называемую «Измерение нескольких объектов» (также известное как «3 DIS»), которую вы можете включить, чтобы он отображал 3 верхних значения из одного измерения.Он автоматически выделит расстояние, которое, как он считал, вы намеревались достичь, а также покажет вам второе и третье наиболее сильные полученные показания. Например, если вы приближаетесь к дереву на 250 ярдов, а в 100 ярдах позади него находится джип, а в 1000 ярдах позади него — здание… оно будет отображать 250, 350 и 1350 (и, вероятно, выделит 350 ярдов).

Vectronix Multiple Object Measurement Feature 3 DIS

Смысл в том, чтобы убедиться, что реальная информация о дальности каким-то образом доступна пользователю, вместо того, чтобы скрывать ее от них.Очевидно, что устройство уже имеет эту информацию, так что на самом деле это просто создает для пользователя способ просмотра и прокрутки этих показаний (желательно в порядке от самого сильного к самому слабому). Это должно быть только несколько верхних чтений. Эта функция не то, что вы хотели бы использовать при каждом измерении, но в сценариях с жестким диапазоном (что не является редкостью) наличие быстрого и интуитивно понятного способа увидеть полный набор возможных показаний может иметь значение. диапазон или нет.По крайней мере, это дало бы пользователю дополнительную уверенность в том, что отображаемое значение соответствует заданной цели.

Просто сделай их умнее

Модель Vectronix Vector 23 демонстрирует, что вам не обязательно иметь «расширенные режимы», чтобы лучше понимать, какие показания отображать. Фактически, я не мог придумать ни одного сценария жесткого определения дальности, при котором Vector 23 давал бы мне показания для чего-либо, кроме моей намеченной цели. Мне ни разу не пришлось включать функцию «3 DIS» в моем тестировании Vector 23, потому что диапазон, который он отображал, всегда был тем, который я пытался получить.

Сейчас модель Vectronix Vector 23 стоит около 24 000 долларов, и я знаю, что это ставит ее в другой класс, чем большинство других дальномеров. Но это действительно доказывает, что производительность дальномеров может быть огромной только в зависимости от того, насколько они умны в анализе результатов и выборе правильного расстояния для отображения. Я лично занимаюсь профессиональной разработкой программного обеспечения более десяти лет и знаю, что это возможно со стороны программного обеспечения. Незначительные улучшения в алгоритмах, используемых устройством для определения расстояния, могут сделать огромный скачок в производительности дальномера … и стоят почти ничего по сравнению с деталями и трудом, которые входят в высококлассный дальномер.

Я уверен, что с течением времени и развитием технологий этот тип производительности и инноваций проникнет в дальномеры, более доступные по цене. Надеюсь, этот пост просветит больше потребителей и поможет производителям интегрировать эти инновационные функции раньше, чем позже.

Другие посты из этой серии

Ranging Binocular Field Test and Reviews

Это лишь один из целого ряда постов, связанных с полевым испытанием дальномера. Вот ссылки на другие:

  1. Как работают дальномеры? От основных к расширенным возможностям
  2. Модели и характеристики
  3. Результаты испытаний оптических характеристик
  4. Результаты тестирования производительности диапазона
  5. Общие результаты

Во время полевых испытаний я использовал каждую модель в среднем 500 раз… поэтому я использовал их много.Я также попросил двух своих близких друзей использовать их и записал, что нам нравится или не нравится в каждом из них. Я преобразовал эти заметки и результаты испытаний для каждой модели в подробные обзоры для каждой модели. Я также сделал несколько снимков каждой модели в высоком разрешении и разместил фотогалерею каждой из них вместе с обзором. Посмотрите их:

© Copyright 2020 PrecisionRifleBlog.com, Все права защищены.

.

Как работает лазерный дальномер? — Психический зуд

Гольф — одно из тех занятий, которые собирают вместе людей всех возрастов, поскольку это легкий вид спорта, который подходит для всех. Объединяя в себе лучшее из обоих миров, гольф сочетает в себе упражнения и общение; практика сосредоточения и расслабления; и предлагая веселую задачу, которая в то же время успокаивает!

How Does a Laser Rangefinder Work How Does a Laser Rangefinder Work

В то время как самые известные инструменты для игры в гольф, о которых все знают, включают сумки для гольфа, клюшки, перчатки, маркеры и тележку для гольфа … дальномер для гольфа — очень полезное оборудование, которым должен владеть каждый энтузиаст гольфа.Дальномер для гольфа важен для определения расстояния до ваших целей на поле для гольфа.

Несмотря на то, что на рынке доступны различные модели, три основные категории — это GPS, оптические и лазерные дальномеры. Лазерные дальномеры помогают как новичкам, так и профессионалам улучшить свою игру и максимально использовать ее. Если вы подумываете о покупке одного для следующей игры, мы рекомендуем вам перед покупкой провести небольшое исследование, чтобы найти лучший лазерный дальномер, соответствующий вашему бюджету.В этой статье мы расскажем, как работает лазерный дальномер, чтобы вы лучше поняли этот полезный инструмент.

Что он делает

Лазерные дальномеры

в основном используют световые лучи для измерения расстояния от установленной цели. Хотя скорость света меняется в зависимости от различных температурных условий, в гольф обычно играют в относительно ясные дни, поэтому недостатки в этом случае минимальны.

Теперь о механизме; лучи света увеличивают цель, а часы дальномера измеряют количество времени, которое требуется лучу, чтобы поразить цель и отскочить назад.После определения скорости луча дальномер записывает измерение времени и вычисляет общее пройденное расстояние, которое затем отображается на экране, чтобы вы могли его проверить.

Как использовать

  1. Прежде всего, вы точно определите намеченную цель — легко!
  2. После этого вы наводите дальномер прямо на цель.
  3. Нажмите на спусковой крючок, когда цель появится в поле зрения, направив лазерный луч на цель.
  4. Это должно дать вам читаемое расстояние на экране дисплея.
  5. Если показания отсутствуют, перед повторением шагов необходимо отрегулировать и стабилизировать прибор.

Углы наклона

Для игр, которые проводятся на холмистом поле для гольфа, вам нужно будет использовать угол наклона для более точного определения расстояния. Таким образом вы сможете определить местонахождение и измерить углы объекта, образованные разницей в высоте.

Принеси свою игру

Теперь, когда вы лучше понимаете, как работает лазерный дальномер для гольфа, вы знаете, что ему нужно меньше времени, чтобы определить расстояние до точной лунки.А если вы играете в турнире, в котором вам не нужно проходить лунки по порядку, вы можете вручную выбрать следующую лунку или даже цель для юнита, от которого нужно рассчитать расстояние. Это идеальное дополнение как для профессиональных игроков в гольф, так и для тех, кто занимается им просто для развлечения.

.

Лазерные дальномеры — как они работают? Какой выбрать?

Лазерные дальномеры — как они работают? Какой выбрать? | Электронные компоненты. Дистрибьютор, интернет-магазин — Transfer Multisort Elektronik

Вы просматриваете международную версию сайта. На основе данных о местоположении вам будет предложена версия страницы. США / США Сменить страну

.

Как работают лазеры | ОРЕЛ

Волшебство лазеров окружает нас повсюду, от высокоскоростных станков для резки до удаления татуировок, хирургии глаза, сканеров штрих-кода, список можно продолжать. Если бы дело касалось доктора Зла, у нас были бы даже акулы с лазерами. Эта иногда невидимая технология часто воспринимается как загадка даже в нашей самой заветной научной фантастике, где что-то вроде Звезды Смерти использует супер-лазер для уничтожения целых планет. Но что такое лазер, как он работает и как мы используем его для повседневных удивительных вещей? Как и в случае с любой другой электронной технологией, вы можете быть удивлены, насколько все это может быть простым.

dr-evil-sharks-with-lasers

Определение лазеров

Вы можете думать о лазере как о машине, которая испускает триллионы световых частиц, называемых фотонами, в точный луч света. Лазер — это аббревиатура, обозначающая усиление света за счет вынужденного излучения излучения . Два ключевых слова — это усиление света, которое вызывается процессом вынужденного излучения светового излучения. Мы расскажем об этом более подробно позже.

lasers-defined

(Источник изображения)

По своей сути, лазеры не так уж и отличаются от других технологий, использующих свет в электромагнитном спектре.Говорите ли вы о радиоволнах, рентгеновских лучах, инфракрасных лучах или лазерах, все они используют части как видимого, так и невидимого светового спектра для выполнения своей работы. Однако, в отличие от других световых технологий, лазеры обладают некоторыми уникальными характеристиками, в том числе:

  • Монохромный. Свет, излучаемый лазером, представляет собой свет с одной длиной волны, поэтому вы часто видите лазеры красного или зеленого цвета. Эта длина волны и получаемый в результате цвет, который мы воспринимаем, вызваны количеством энергии, высвобождаемой, когда электрон теряет энергию.
  • Связный. Световой рисунок от лазера также когерентен или организован. Возьмем, к примеру, фонарик, который испускает конус фотонов с разной длиной волны во всех направлениях. В лазере все длины волн в каждом фотоне идеально совпадают друг с другом, как солдаты, идущие по прямой.
  • Направленный. Свет от лазера направлен. По сравнению с фонариком, который излучает свет в разных направлениях, лазеры вместо этого предлагают точный и концентрированный луч электромагнитного излучения.

Три основных компонента заставляют работать каждый лазер, будь то массивный газовый лазер или миниатюрный полупроводниковый лазер. Сначала вам нужно большое количество атомов в какой-то среде , будь то твердое тело, жидкость или газ. Затем вам понадобится стимулятор для возбуждения электронов в атомах среды. Этот стимулятор может быть чем-то вроде лампы-вспышки, ксеноновой лампы-вспышки или даже другого лазера. Наконец, вам понадобится набор зеркал , которые будут отражать фотоны вперед и назад и, в конечном итоге, выходить через отверстие в одном из зеркал, чтобы создать наш характерный лазерный свет.

components-of-a-laser

Компоненты лазера, в том числе среда (рубиновый стержень), стимулятор (импульсная лампа) и отражающие зеркала. (Источник изображения)

Как работает лазер

Чтобы понять, как работает лазер, вам сначала нужно знать, что электроны находятся на разных орбитах с энергетическими зонами внутри атома. Вы можете думать об этих полосах как об отдельных ступенях лестницы; может быть, у вас есть один в вашем доме.

По умолчанию все электроны находятся на первой ступеньке этой лестницы, которая считается основным состоянием электрона .Если вы затем вложите в электрон нужное количество энергии, вы сможете заставить его двигаться на ступень выше. Этот процесс называется поглощением , когда электрон поглощает энергию, выпущенную в него, и в процессе его уровень энергии повышается до следующего шага или диапазона.

electron-bands

Здесь мы видим две запрещенные зоны внутри атома, между которыми могут перемещаться электроны. (Источник изображения)

В этом состоянии с более высокой энергией электрон считается возбужденным , но также неуравновешенным.Чтобы восстановить баланс, электрон высвобождает первоначальный бит энергии, который он поглотил в виде фотона или частицы света. Это высвобождение энергии называется спонтанным излучением . Здесь электрон теряет первоначально полученную энергию и возвращается на первую ступеньку нашего лестничного марша.

spontaneous-emission

В результате спонтанного излучения электрон теряет энергию и испускает фотон. (Источник изображения)

Мы можем видеть, как атомы, исполняющие этот танец спонтанного излучения, повсюду вокруг нас, переходя из состояния земли в состояние возбуждения и обратно в состояние земли, в различных приложениях.Возьмем, к примеру, тостер. Катушки горят ярко-красным цветом, потому что атомы возбуждаются теплом и при этом выделяют красные фотоны. Тот же процесс происходит с люминесцентными лампами, экранами компьютеров и т. Д.

За пределами атомного

Теперь, когда мы понимаем, что происходит на атомном уровне, давайте объединим это в практическом применении лазера. Во-первых, какая-то среда, будь то твердое тело, жидкость или газ, подвергается интенсивной вспышке света или электрического разряда.Этот процесс создает массивное скопление возбужденных электронов в среде. Когда в лазере возбужденных электронов больше, чем заземленных, это состояние называется с инверсией населенности .

Все эти возбужденные электроны в своем возбужденном состоянии теперь начинают выделять энергию, которую они поглотили. Во время этого процесса электрон переместится на несколько ступеней вниз в свое исходное положение на земле, испуская фотоны определенной длины волны. Эти возбужденные электроны также стимулируют другие электроны одновременно высвобождать свои накопленные фотоны.Этот процесс, в котором один электрон вызывает цепную реакцию высвобождения фотона в других электронах, называется стимулированным излучением , .

stimulated-emission

Вынужденное излучение требует ввода одного фотона для получения двухфотонного излучения. (Источник изображения)

Теперь представьте, что у нас есть огромное количество электронов, чередующихся из состояний с низкой энергией в состояние с высокой и с низкой энергией, и в процессе высвобождения фотонов. Если вы теперь поместите набор зеркал между одной стороной лазерной среды и другой, вы сможете использовать и направить эти фотоны для создания нашего характерного лазерного света.

Хитрость здесь с зеркалами в том, что одно из зеркал должно быть немного менее отражающим, чем другое. Когда фотоны отражаются от одного зеркала, они затем попадают в слегка прозрачное зеркало, и через небольшое «отверстие» в зеркале проходит точный луч света. Наш лазерный свет родился.

Вы можете взять нечто, называемое рубиновым лазером, и увидеть это в действии. Посмотрите изображение ниже; это устройство содержит все компоненты, необходимые для работы лазера.У него есть среда в виде кристалла рубина, стимулятор импульсной лампы и набор зеркал на обоих концах, одно из которых более прозрачно, чем другое. Вот как здесь будет работать процесс:

ruby-laser

Рубиновый лазер в действии с набором простых компонентов. (Источник изображения)

  1. Во-первых, электрический ток будет включать и выключать лампу-вспышку , которая возбуждает электроны в кристалле рубина.
  2. Эти возбужденные электроны в своем повышенном состоянии затем возвращаются в свое основное состояние и испускают фотон света в процессе спонтанного излучения .
  3. Эти фотоны носятся по всей среде, отражаясь от зеркал и переводя другие электроны в повышенное состояние. Это вызывает испускание большего количества фотонов посредством процесса стимулированного излучения . Вскоре у вас больше возбужденных, чем заземленных электронов, что создает инверсию населенности .
  4. Два зеркала удерживают фотоны, отскакивающие назад и вперед в кристаллической среде , но одно из зеркал имеет немного меньшую отражающую способность и пропускает некоторые фотоны.
  5. Ускользающие фотоны попадают в мир в виде концентрированного и мощного луча лазерного света.

Типы лазеров

Существует множество лазеров, все из которых можно разделить на категории в зависимости от типа используемой среды. Это может быть твердое тело, газ, жидкость или полупроводник. Вот что нужно знать о каждом типе:

Лазеры твердотельные

Эти лазеры сделаны из твердой среды, такой как рубин или кристалл, с обернутой вокруг нее импульсной лампой для возбуждения электронов.Подобно полупроводникам, твердотельные лазерные среды должны быть легированы примесями, которые производят свет определенной частоты и длины волны. Обычно эти лазеры используются для систем наведения на цель в военных целях или для сверления отверстий в металлах.

Solid-state-lasers

Лазеры газовые

Эти лазеры обычно изготавливаются из гелия или гелий-неона и излучают характерный красный лазерный свет. Есть также CO2-лазеры, которые излучают энергию в инфракрасном диапазоне. Эти мощные и эффективные лазеры обычно используются для промышленной резки и сварки.

gas-lasers

(Источник изображения)

Лазеры на жидких красителях

В этих лазерах в качестве среды используются жидкие красители, такие как родамин, в жидком растворе. Электроны возбуждаются дуговой лампой, импульсной лампой или другим лазером. В отличие от твердотельных или газовых лазеров, лазеры на жидких красителях могут создавать более широкую полосу световых частот и, как следствие, могут использоваться во множестве приложений.

pulsed-dye-laser

(Источник изображения)

Лазеры полупроводниковые

Эти лазеры дешевы в производстве и используются во множестве электронных устройств, от лазерных принтеров до сканеров штрих-кода.Вы могли слышать эти лазеры, называемые диодными лазерами, поскольку они используют светодиод для генерации света в монохроматическом узоре.

semiconductor-lasers

(Источник изображения)

Лазеры также могут быть классифицированы за пределами их общих категорий на основе определенных длин волн, которые производит их среда. Наиболее распространенные лазеры и связанные с ними длины волн включают:

Тип лазера Длина волны (нм)
Фторид аргона (УФ) 193
Фторид криптона (УФ) 248
Ксенон хлорид (УФ) 308
Азот (УФ) 337
Аргон (синий) 488
Аргон (зеленый) 514
Гелий неон (зеленый) 543
Гелий неон (красный) 633
Родамин 6G краситель (настраиваемый) 570-650
Рубин (CrAlO3) (красный) 694
Nd: Yag (NIR) 1064
Двуокись углерода (FIR) 10600

Существует также другая система классификации, основанная на возможности биологического повреждения.Вы найдете эту систему на основе классов, напечатанную на упаковке лазера, и это будет либо:

  • Класс I. Это лазеры, которые, как известно, не наносят биологического вреда. Лазеры класса I подразделяются на класс I.A, которые не предназначены для просмотра и включают такие приложения, как сканер штрих-кода в вашем продуктовом магазине.
  • Класс II. Эти лазеры сильнее, чем лазеры класса I, но их мощность излучения не превышает 1 мВт. Эта классификация делает их безопасными для использования людьми, поскольку наше естественное отвращение к яркому свету ограничивает экспозицию.
  • Класс III. Эти лазеры работают в диапазоне 1–5 мВт и представляют опасность при прямом взгляде на луч. Лазеры класса III подразделяются на класс III A, которые являются лазерами средней мощности, и класс III B, которые являются лазерами средней мощности.
  • Класс IV. Это мощные лазеры мощностью 500+ мВт; они также опасны для просмотра при любых условиях. При прямом взгляде лазеры класса IV представляют значительную опасность для кожи, а также могут вызвать пожар, если не обращаться с ними на контролируемом объекте.

Лазеры и их применение

У лазеров есть масса приложений, которые влияют на нашу повседневную жизнь. Некоторые из них видны, например, использование лазеров для удаления татуировок, тогда как другие лазеры работают негласно во всех наших электронных устройствах. Некоторые из наиболее распространенных применений лазеров включают:

Резка и лечение

Роботы с лазерным наведением используются для резки тканей и металлов, которые когда-то были вырезаны вручную. Возьмем, к примеру, джинсы, где роботы, управляемые лазером, могут разрезать ткань различной толщины одновременно.Вы также увидите, как лазеры используются в медицине для уничтожения раковых опухолей, прижигания кровеносных сосудов и восстановления зрения путем восстановления отслоившихся сетчаток.

lasik

Общение

Лазеры составляют основу всех наших подключенных устройств и Интернет-технологий. Сканер штрих-кода с питанием от лазера в вашем местном магазине делает покупку продуктов легкой и эффективной. Кроме того, существуют оптоволоконные кабели, которые используют фотоны для передачи огромных потоков данных через Интернет.

Оборона

Военные являются крупными инвесторами в лазерные технологии и используют их в своем оружии и ракетных системах.Еще в 1980-х годах вы, возможно, слышали о программе «Звездных войн», когда американские военные планировали использовать рентгеновские лучи для уничтожения вражеских ракет. Сегодня ВМС разработали успешную систему лазерного оружия (LaWS) для использования на своих линкорах. Эта система оружия представляет собой твердотельный лазер, который возбуждает электроны с помощью светодиодов и может точно уничтожать объекты на впечатляющем расстоянии.

Кто изобрел лазер?

Это спорный вопрос. Прежде всего, мы должны отдать огромную честь Альберту Эйнштейну, который в 1905 году разработал квантовую теорию света и фотонов.Позднее он в 1917 году теоретизировал механизм вынужденного излучения. Без этих двух открытий разработка лазеров была бы невозможна.

Спустя 30 лет у нас появился первый намек на лазер в виде мазера. Это устройство было изобретено американскими физиками Чарльзом Таунсом и Артуром Шавлоу. Хотя мазер использует те же принципы, что и лазер, он производит микроволны и радиоволны вместо видимого света. Эти два изобретателя получили Нобелевскую премию по физике за свои работы в 1964 и 1981 годах.

Charles-Townes

Чарльз Таунс (слева) с первым мастером в 1955 году. (Источник изображения)

Сюжет сгущается. В 1957 году один из аспирантов Чарльза Таунса, Гордон Гоулд, набросал в своей записной книжке идею мазера в видимом свете. К несчастью для Гулда, он так и не запатентовал свою идею и в итоге провел следующие 20 лет своей жизни, борясь за гонорары и патенты.

Так кто же на самом деле изобрел лазер? Сложно сказать. Это изобретение приписывают Таунсу и Шавлову, но первым, кто построил настоящий лазер, был Теодор Мейман, другой американский физик.Однако работа Меймана так и не получила полного признания, а две его номинации на Нобелевскую премию по физике остались непризнанными.

Theodore-Maiman

Теодор Майман с первым работающим лазером видимого света.

Это своего рода внезапный конец истории; мы сожалеем об этом. Было много рук и умов, которые вложились в разработку лазерной технологии, которую мы используем сегодня. Некоторые говорят, что изобретение было просто коллективной работой.

Laser Away

Как и любой другой вид электромагнитного излучения, лазеры используют видимый и невидимый свет для резки металлов, операций на глазах, сканирования ваших продуктов, управляемых ракет и многого другого.Что удивительно, в основе этой технологии лежит простой набор принципов. Независимо от того, используете ли вы газовый лазер для резки металла или полупроводниковый лазер в своей электронике, каждый из них использует преимущества возбуждения электронов для получения необходимого света. С помощью двух простых зеркал вы можете направлять фотоны в концентрированный луч, чтобы делать удивительную работу. Итак, оглянитесь вокруг, можете ли вы заметить в своем окружении предметы, работающие от лазеров? Они обязательно где-то будут.

Хотите интегрировать лазеры в свой следующий электронный проект? Попробуйте Autodesk EAGLE бесплатно сегодня!

.

Отправить ответ

avatar
  Подписаться  
Уведомление о