Привязка конструктивных элементов зданий к разбивочным осям


Использование унифицированных объемно – планировочных  и конструктивных решений промышленных зданий требует соблюдения единых правил привязки конструктивных элементов к разбивочным осям.

Под размером привязки понимают расстояние от разбивочной оси до грани или геометрической оси сечения конструктивного элемента.

В одноэтажных каркасных зданиях при привязке колонн крайних и средних рядов, наружных продольных и торцевых стен, колонн в местах устройства температурных швов, а также в местах перепада высот между пролетами и примыкания взаимно  перпендикулярных направлений пролетов используют привязки «нулевая», «250» и «500» («600») мм.

«Нулевая» привязка должна быть преимущественной, т.к. при ней исключается применение доборных ограждающих и несущих элементов в местах устройства температурных швов, высотных перепадов и примыкания пролетов различного направления.

Ее используют при всех видах материалов каркаса в бескрановых зданиях и в зданиях с подвесными и опорными кранами, если высота от пола до низа несущих конструкций не превышает 14,4м, а грузоподъемность кранов – 32т.

При «нулевой» привязке внешние грани колонн крайних продольных рядов совмещают с разбивочными (координационными) осями.

При этом внутренняя поверхность продольных наружных стен и положение разбивочной оси совпадает за исключением случаев применения применения крупноразмерных навесных (самонесущих) конструкций стен.

В этих случаях для удобства монтажа и расположения приборов крепления предусматривают зазоры  30 мм  между внешними гранями колонн и внутренней поверхностью стен.

 

 

Привязка элементов одноэтажных зданий к продольным и поперечным разбивочным осям

 

При привязке «250» и более (кратной 50мм) внешние грани колонн смещают наружу с разбивочной оси на 250 мм.

Такая привязка допустима в зданиях с мостовыми кранами грузоподъемностью 32 т и более, при высоте пролета более 14,4 м и шаге колонн 6 м, а также в зданиях при шаге колонн 12 м и высоте пролетов более 12м.

В таких зданиях использование привязки «250» и более вызвано увеличением размеров сечения колонн  и подколонников, а в ряде случаев необходимостью устройства проходов для ремонта и обслуживания подкрановых путей мостовых кранов.

В торцах зданий геометрические оси сечения основных колонн  средних и крайних рядов смещают с разбивочной оси внутрь на 500 мм, а сама разбивочная ось совмещается с внутренней поверхностью торцевой стены.

В случае необходимости между поверхностью стены и разбивочной осью оставляется зазор 30 мм.

Такое правило привязки позволяет производить конструктивно оправданное размещение фахверковых колонн  у торцевых стен и подстропильных (стропильных)  конструкций покрытия без доборных элементов.

Поперечный температурный шов между парными колоннами в зданиях с пролетами равной высоты устраивают с использованием привязки колонн к одной или двум разбивочным осям.

Привязки к двум разбивочным осям применяют в зданиях со сборным железобетонным каркасом и при расстоянии между поперечными температурными швами более 144 м.

В обоих случаях привязка предусматривает смещение геометрических осей сечения колонн на 500 мм в обе стороны от разбивочных осей.

В настоящее время  в связи с совершенствованием унификации рекомендуется переход на новые, более экономичные привязки.

В частности, вместо привязки «500» в случаях, рекомендовано использование привязки «600».

Продольный температурный шов между парными колоннами в зданиях с пролетами равной высоты осуществляют, предусматривая две разбивочные оси со вставкой между ними (рис. 4,ж-к). Размер вставки зависит от способов привязок в примыкающих пролетах и может составлять 500, 750 и 1000 мм.

Привязку колонн разновысоких пролетов осуществляют к двум продольным разбивочным осям  со вставкой между ними.

Привязка колонн к этим осям должна соответствовать правилам привязок «0» или «250».

 

Размер вставки С (мм) должен быть кратным 50мм (но не менее 300 мм) и равняться сумме следующих размеров:

С = «0» («250») х 1(2) + d + e + 50

где   d – толщина стены, мм;  e- зазор между наружной гранью колонн  повышенного пролета и внутренней плоскостью стены, мм, обычно равное 30мм; 50 мм – зазор между наружной плоскостью стены и гранью колонн пониженного пролета.

В местах примыкания взаимно перпендикулярных пролетов  привязку колонн осуществляют также к двум разбивочным осям со вставкой между ними.

 

Размер вставки С (мм) зависит от способа привязки в поперечном (более высоком) пролете  («0» или «250») и может быть определен  из выражения:

С = 0 (250) + e + d + 50.

Этот размер округляют до кратности 50 мм, но он не должен быть менее 300 мм.

При наличии продольного температурного шва между пролетами, примыкающими к перпендикулярному пролету, этот шов продлевают до пролета, где он будет поперечным швом.

При этом вставка между разбивочными осями в продольном и поперечном швах должна иметь одинаковую величину ( 500, 750 или 1000 мм), а каждую из парных колонн по линии поперечного шва смещают с ближайшей парной оси на 500 мм.

В зданиях с покрытиями из железобетонных оболочек внешние грани колонн крайних рядов смещают с разбивочных осей  наружу на 250 мм, а внутренние плоскости наружных стен из панелей горизонтальной разрезки  располагают на 30 мм от грани этих колонн.

Ширину вставки между парными разбивочными осями в местах продольных и поперечных температурных швов принимают равной  1000 мм, а колонны, обращенные в сторону швов, относят от разбивочных осей наружу на 250 мм.

 

 

Привязка колонн и наружных стен многоэтажных зданий к продольным и поперечным разбивочным осям и в местах температурных швов

 

В месте примыкания к одноэтажному зданию многоэтажного не допускается смещать разбивочные оси, перпендикулярные к линии пристройки  и общие для отдельных частей сблокированного здания.

При этом вставку между разбивочными осями по линии поперечных температурных швов многоэтажного здания предусматривают тогда, когда нельзя смещать оси в обеих частях здания.

 

 

Температурные швы в пристройках, продолжающие швы одноэтажной части здания

 

Размер вставки между параллельными  крайними разбивочными осями  по линии примыкания многоэтажного объема к одноэтажному принимают таким, чтобы в этом месте можно было использовать по возможности типовые стеновые панели.


Привязка к осям колонн в одноэтажных промышленных зданиях продольные и поперечные оси

 

ПРОДОЛЬНЫЕ ОСИ:

1) Нулевая.

При нулевой привязке наружная грань колонны совпадает с продольной разбивочной осью, а внутренняя грань стены условно совмещается с наружной гранью колонны.

 (При нулевой привязке колонн привязка стены в этом месте условно нулевая )(примерно 30 мм).

 

(!!! У торцов здания колонны смещаются от стены (поперечной оси) на 500мм.внутрь здания. От поперечной оси до оси симметрии колонны 500 мм) Фахверковые колонны- нулевая привязка к этой оси(по внешней их грани, стены – по её внутренней, шаг 6м, 12 м-панели 6,12))

 

Приемущества – минимум доборных деталей, и доп. работ по закрытию зазоров между элементами.

 

Нулевая привязка применяется:

 — в здании с ж/б каркасом без мостовых кранов при шаге крайних колонн от 6 до 12м.

 — в здании со стальным или смешанным каркасом без мостового крана при стеновых панелях длинной 6м и шаге 6м, при панелях длинной 12м и шаге 12м.

 — в здании со сборным ж/б или смешанным каркасом, оборудованным мостовым краном грузоподъемностью до или =20тонн, шаг крайних колонн 6м, высота менее или=14,4м.

 

2) Привязка 250

!!! Привязка колонн 250 (расстояние от наружной грани колонны до координатной оси) – а привязка продольной стены 280 (250+30)

Применяется:

 — в здании с мостовым краном с ж/б или смешанным каркасом при шаге наружных колонн 12м, грузоподъемность крана от 30 до 50 тонн при шаге 6м, и если высота более 14,4м.

— в здании с кранами грузоподъемностью менее 50тонн и с проходами вдоль крановых путей.

 — в здании со стальным каркасом без мостового крана и шаге крайних колонн 12м при длине панели 6м.

— в здании со стальным каркасом, оборудованном мостовым краном, при шаге крайних колонн 6м и 12м.

 

«- Между наружней стеной и стропильной фермой зазор, котрый надо закрывать доборными плитами

 

3)Привязка 500.

Применяется при грузоподъемности крана больше 50 тонн.

 

ПОПЕРЕЧНЫЕ ОСИ:

Привязка к поперечным осям осевая, за исключением колонн, расположенных у торцов здания и поперечных температурных швов(ось-одна, пара колонн, смещённых на 500мм от оси до оси колонны внутрь своих температурных отсеков)

 

ПРИВЯЗКА СРЕДНИХ РЯДОВ КОЛОНН

Осевая привязка (разбивочная ось совпадает с осью сечения разб.ряда)

 

ТЕСТОВЫЕ ВОПРОСЫ:

 

— Укажите величину привязки ж/б колонн крайнего ряда продольной разбивочной оси при следующих параметрах: высота 14,4м, шаг колонн 6м, подъемный кран грузоподъемностью 3т, длина 84м.

Ответ в мм: 0.

 

— Какие факторы НЕ влияют на размеры привязки колонн среднего ряда продольной разбивочной оси?

Расположение колонн в ряду.

 

— Привязка «250» означает, что расстояние 250мм

От наружной грани колонны до разбивочной оси

 

— Какие факторы влияют на размеры привязки колонн к поперечным разбивочным осям?

Расположение колонн в ряду.

 

— Укажите размер привязки колонны крайнего ряда к продольной оси при следующих параметрах: высота 13,2м, шаг колонн 6м, мостовой кран грузоподъемностью 10т, длина 60.

Ответ в мм: 0.

 

— Нулевая привязка колонн означает, что совпадают:

Наружная грань колонны и координационная ось.

 

— Какие факторы не влияют на размеры привязки колонн к продольным разбивочным осям?

Длина здания, шаг колонн.

 

— Укажите привязку колонн крайнего ряда к продольной разбивочной оси в одноэтажном здании длиной 54м, высотой 14,4м с шагом колонн 6м и опорным мостовым краном грузоподъемностью 60т.

Ответ в мм: 500.

 

— Привязка колонны «500» к продольной координационной оси означает, что 500 мм это расстояние:

От наружной грани колонны до координационной оси.

 

— Какие факторы не влияют на размеры привязки колонн к разбивочным осям?

Грузоподъемность подвесных кранов, расположение конвейеров, расположение окон, длина здания.

 

— Определите привязку колонны крайнего ряда к продольной разбивочной оси в здании высотой 9,6м с шагом колонн 6м и опорным мостовым краном грузоподъемностью 10т без проходов вдоль крановых путей.

Ответ в мм: 0.

 

— В торце одноэтажных зданий смещаются на 500мм от координационной оси

Основные колонны каркаса, стропильные конструкции.

— Какие факторы влияют на размеры привязки к координационным осям в одноэтажных зданиях с каркасным несущим остовом?

От шага колонн, от высоты здания. (грузоподъемность?)

 

— Укажите привязку ж/б колонн крайнего ряда к продольной разбивочной оси в здании высотой 16,8м с опорным мостовым краном грузоподъемностью 30т без прохода вдоль крановых путей.

Ответ в мм: 250.

От каких факторов зависят размеры привязки стен в каркасных зданиях?

Высота здания, грузоподъемность мостовых кранов.

 

— Укажите привязку колонн крайнего ряда к продольной разбивочной оси в одноэтажном здании высотой 10,8м с шагом колонн 12м и опорным мостовым краном грузоподъемностью 10т.

Ответ в мм: 250.

 

— С какой привязкой устанавливают колонны продольного фахверка в одноэтажных зданиях?

С нулевой привязкой к внутренней грани стены

 

Привязка колонн к поперечным разбивочным осям — Студопедия

Привязка колонн к продольным разбивочным осям

По отношению к продольным осям средние колонны имеют осевую привязку, то есть геометрические оси колонн совпадают с разбивочными осями здания.

Крайние колонны могут иметь привязку нулевую или 250 мм. При нулевой привязке наружная грань колонны совпадает с разбивочной осью здания. При привязке 250 мм грань колонны смещается наружу от разбивочной оси здания.

Таблица 4

Унифицированные размеры привязки а колонн крайнего ряда

к продольной разбивочной оси в одноэтажных зданиях

Характеристика промышленного здания привязка
Здания (пролеты) со сборным железобетонным и смешанным каркасом без мостовых кранов и подстропильных конструкций: — во всех случаях   нулевая
Здания (пролеты) со сборным железобетонным и смешанным каркасом с мостовыми кранами: — Ш=6 м; Н≤14,4 м — Ш=6 м; Н>14,4 м — Ш=12 м при любой высоте     нулевая а=250 мм а=250 мм
Здания (пролеты) со сборным железобетонным и смешанным каркасом без мостовых кранов и с мостовыми кранами: — при наличии подстропильных конструкций     а=250 мм
Здания с цельнометаллическим каркасом: — Н=6 … 8,4 м без мостовых кранов — Н=9,6 … 18 м без мостовых кранов — с мостовыми кранами   нулевая а=250 мм а=250 мм

В местах поперечных температурно-деформационных швов, разделяющих продольные пролеты, к одной поперечной оси привязывают две колонны со смещением осей колонн относительно разбивочной оси на 500 мм в обе стороны.


Колонны, расположенные в торцах пролетов, смещаются относительно крайней поперечной разбивочной оси внутрь здания на 500 мм (до оси колонны) независимо от материала колонн, их шага и высоты здания (см. узел 1 рис. 1).

Такое расположение колонн в торцах здания дает возможность поместить верхнюю часть колонн торцевого фахверка между крайней стропильной конструкцией и стеной. При этом наружные грани колонн торцевого фахверка должны совпадать с крайней поперечной разбивочной осью. Таким образом обеспечивается возможность навески торцевых стеновых панелей к колоннам фахверка по всей высоте от пола до покрытия.

Для крепления торцевой стены к колоннам основного каркаса в зазор между колонной и стеной устанавливаются приколонные стальные стойки фахверка сечением 300х300 мм, привариваемые к стальным колоннам или к закладным деталям железобетонных колонн.


Как уже говорилось выше, в тех случаях, когда температурные швы выполняются на парных координационных осях, расстояние между ними определяется размером вставки (с). Модульные размеры вставок даны в табл. 5.

Таблица 5

Размеры вставок между координационными осями одноэтажных зданий при различной толщине навесных панелей

Привязка колонн Размеры вставок (в мм) при толщине панелей (в мм)
при одинаковой высоте параллельных пролетов при перепаде высот параллельных пролетов при взаимно перпендикулярном примыкании     160 – 200        
- 0 и 0
- 0 и 250
- 250 и 250 -
0 и 0 - -
0 и 250 - -
250 и 250 - -


Рис. 1. Схематический план (сетка разбивочных осей) одноэтажного промышленного здания с тремя продольными и одним поперечным пролетами


Рис.2. Узлы к рис.1


Рис.3. Узлы к рис.1

ПОДБОР КОНСТРУКЦИЙ ПРОМЫШЛЕННОГО ЗДАНИЯ

В учебном курсовом проектировании подбор типовых элементов каркаса и других конструкций промышленного здания выполняется по «Альбому чертежей конструкций и деталей промышленных зданий» Р.И. Трепененкова [6].

Привязка колонн и стеновых ограждений к разбивочным осям здания — Студопедия

1. В железобетонном и смешанном каркасах колонны крайнего ряда по отношению к продольной разбивочной оси имеют нулевую привязку.

2.В металлическом каркасе привязка 250 мм.

В ж/б и смешанном

В металлическом

2. В любом каркасе колонны среднего ряда по отношению к продольной разбивочной оси имеют центральную привязку.

4. В любом каркасе торцевые колонны по отношению крайней поперечной разбивочной оси имеют привязку 500 мм.

5. В торцах здания для крепления стеновых панелей устраивают колонны фахверкас шагом 6 м с нулевой привязкой к крайней поперечной разбивочной оси.

6. В железобетонном и смешанном каркасах при длине пролета 60 м и более, в металлическом 120м и более устанавливают температурный шов,который решается на двух колоннах, каждая из которых по отношению к оси температурного шва имеет привязку 500 мм. Шов делит здание на отдельные температурные блоки. Для обеспечения пространственной жесткости в середине температурного блока в каждом ряду колонн устанавливают связи : при шаге колонн 6 м – крестовые, при шаге 12 м – портальные.

Пример:

Контрольные вопросы:

1. В зданиях с железобетонным и смешанным каркасами колонны крайних рядов по отношению к продольным разбивочным осям какую имеют привязку?

2. Колонны средних рядов в железобетонном, стальном и смешанном каркасах какую имеют привязку по отношению к продольной разбивочной оси?

3. Колонны крайних рядов в стальном каркасе по отношению к продольной разбивочной оси какую имеют привязку?


4.Торцевые колонны основных рядов любого каркаса по отношению к крайней поперечной разбивочной оси какую имеют привязку?

5. Колонны фахверка устанавливаются в торцах пролетов с каким шагом?

Литература:

1.Вильчик Н.П. « Архитектура зданий» М ИНФРА-М 2010

2. Шерещевский И.А. «Конструирование промышленных зданий и сооружений» — М.: Стройиздат,2005

Железобетонные колонны в промышленных зданиях


Новый сервисСтроительные калькуляторы online


По положению в здании колонны подразделяются на крайние и средние.

К крайним колоннам с наружной стороны примыкают стеновые ограждения.

Для производственных зданий пролетного типа разработаны типовые колонны сплошного прямоугольного сечения (одноветвевые) и сквозного прямоугольного сечения (двухветвевые).

Колонны сплошного прямоугольного поперечного сечения подразделяют на типы:

— К – для каркасов зданий без мостовых кранов;

— КК – для каркасов зданий, оборудованных мостовыми электрическими опорными кранами;

— ККП – для каркасов зданий, оборудованных мостовыми электрическими кранами, с проходами в уровне крановых путей.

Колонны сквозного сечения подразделяют на типы:

— КД – для каркасов зданий, оборудованных электрическими опорными кранами;

— КДП – для каркасов зданий, оборудованных мостовыми опорными кранами, с проходами в уровне крановых  путей.

Колонны предназначены для применения в зданиях:

— расположенных в I–IV географических районах по скоростному напору ветра и по весу снегового покрова;

— с неагрессивной, слабо; и среднеагрессивной  газовой средой;

— отапливаемых – без ограничения расчетной зимней температуры наружного воздуха;

— неотапливаемых – при расчетной зимней температуре не ниже –40°С;

— в сейсмических районах (в зданиях с расчетной сейсмичностью 7; 8 или 9 баллов).

Для зданий с железобетонными подстропильными конструкциями высота колонн принята на 600 мм меньше, чем для зданий, в которых применяются только стропильные конструкции.

Колонны рассчитаны на вертикальные нагрузки от веса покрытия, фонарей, коммуникаций, навесных стен, собственного веса, от снега, подвесных и мостовых опорных кранов, а также на горизонтальные (ветровые, сейсмические и температурные) воздействия.

Колонны спроектированы из тяжелого бетона классов В15–В40.

Основная рабочая продольная арматура в колоннах без предварительного напряжения – стержневая из горячекатаной стали периодического профиля класса А III.

Все колонны предназначены для применения в случаях, когда верх фундамента имеет отметку – 0,150.

Во всех колоннах в местах опирания стропильных конструкций и подкрановых балок, в край­них колоннах – на уровне швов стеновых панелей, в связевых колоннах – в местах примыкания продольных связей  устраивают закладные элементы,  заанкеренные  в бетон или приваренные для фиксации положения к рабочей арматуре.

Закладные элементы в местах опирания подкрановых балок и стро­пильных конструкций состоят из стального листа с пропущенными сквозь него анкерными болтами.

Бетон под ними усиливается косвенными арми­рованными сетками.

При стальных фермах и подкрановых балках опорные закладные элементы несколько видоизменяются – лист усиливается плитой, рассчитанной на сосредоточенное давление опорных ребер, и меняется расстановка анкерных болтов.

Стальные подстропильные фермы крепятся к стальным надопорным стойкам.

Длину колонн подбирают с учетом высоты цеха и глубины заделки фундамента.

 

                                                   а                                                          б

 

Железобетонные колонны для здания высотой 10,8 – 14,4 м  без опорных кранов:

а – крайнего ряда; б – среднего ряда

 

Для соединения с фундаментом колонна заводится в стакан на глу­бину минус — 0,900 м.

Для крайних колонн принята нулевая привязка к продольной разби­вочной оси.

Все колонны имеют прямоугольное, постоянное по высоте сечение.

 

                                                         а                                                                б

 

Железобетонные колонны для зданий высотой 8,4 – 14,4 м, оборудованных опорными кранами: 

а – крайнего ряда; б – среднего ряда

 

Шаг колонн составляет 6 и 12 м.

Колонны имеют консоли для опи­рания подкрановых балок.

Они рассчитаны на нагрузки от покрытия до 700 даН/м2 мостовых кранов и ветра.

Для колонн наружных рядов с шагом 6 м принята нулевая привязка, при шаге 12 м привязка равна 250 мм.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку минус 0,150.

Колонны имеют прямоугольное поперечное сечение как в верхней (надкрановой), так и в нижней (подкрановой) части.

Для соединения с фундаментом колонна заводится в стакан на глу­бину минус 1,000 м.

 

                                                                    а                                      б

Железобетонные двухветвевые колонны:

а – колонна крайнего ряда; б – колонна среднего ряда

 

Шаг колонн по крайним рядам 6 и 12 м, по средним только 12 м.

Шаг стропильных конструкций 6 и 12 м.

Для крайних колонн при шаге 6 м; Н ≤ 14,4 м; Q ≤ 30 т принята ну­левая привязка, в остальных случаях 250 мм.

Подкрановая часть колонн двухветвевая.

Ветви связаны горизон­тальными распорками через интервал 1,5–3 м.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку минус 0,150.

Отметка головки кранового рельса рассчитана, исходя из высоты кранового рельса (с прокладкой) 150 мм и высоты подкрановых балок.

Для соединения с фундаментом колонна заводится в стакан на глу­бину минус 1,05м.

 

Железобетонные двухветвевые колонны с проходом в уровне крановых путей

Колонны применяются в случае необходимости устройства проходов для постоянного наблюдения за состоянием крановых путей при высоте здания до 14,4 м, пролете до 36 м, шаге по крайним колоннам 6 или 12 м, по средним колоннам — 12 м, грузоподъёмности опорных кранов до 30 т.

Привязка наружной грани крайних колонн к оси 500 мм, оси кранов к оси здания – 1000мм.

Для проходов в шейке колонны устроены лазы размером 400*2200 мм.

Колонна формуется из бетона марки 300-400.

Ветви ствола и шейки армируются сварными каркасами; подкрановый, промежуточные и нижний ригели – вязаной арматурой, собираемой из отдельных стержней.

Колонны снабжены закладными элементами для распалубки и крепления инвентарных монтажных приспособлений, опирания железобетонных или стальных подкрановых балок и стропильных конструкций, опирания и навески стеновых панелей и крепления стальных связей.

 

 

Двухветвевые колонны с проходом  в уровне крановых путей


 

 


Двухветвевые колонны для зданий с мостовыми кранами

Применяют в зданиях высотой более 10,8 м.

Колонны разработаны для применения в одноэтажных зданиях с пролётами 18, 24 и 30 м, высотой от 10,8 до 18 м включительно с фанарями и без фонарей, оборудованных мостовыми кранами общего назначения грузоподъёмностью 10, 20/5, 30/5 и 50/10 тонн среднего и тяжёлого режима работы.

Шаг колонн по крайним рядам 6 и 12 м, по средним только 12 м.

Шаг стропильных конструкций 6 и 12 м.

При шаге стропильных конструкций 6 м крайние колонны устанавливают подстропильные фермы.

Колонны рассчитаны на нагрузки от покрытия до 700 даН/м2., от стен, мостовых кранов и ветра.

Для крайних колонн при шаге 6 м; Н≤14,4 м; Q≤30 т принята нулевая привязка, в остальных случаях 250 мм.

Подкрановая часть колонн двухветвевая. Ветви связаны горизонтальными распорками через интервал 1,5-3м.      

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку  — 0,150.

Отметка головки кранового рельса получена исходя из высоты кранового рельса (с прокладкой) 150 мм и высоты подкрановых балок.

Колонны запроектированы в нижней части с двумя ветвями, соединёнными распорками.

Ветви, распорки и верхняя часть всех колонн имеют сплошное прямоугольное сечение.

Для соединения с фундаментом колонна заводится  в стакан на глубину -1,05 м, -0,35 м.

В двухветвевых колоннах нижняя распорка высотой 0,2 м, заводимая в стакан, имеет отверстия 0,2*0,2 м, используемые при бетонировании стыка.

При дальнейшем совершенствовании конструкции представляется целесообразным нижнюю распорку опустить на дно стакана для лучшей заделки и удобства бетонирования стыка.

 

Арматура колонн вязаная или в виде сварных каркасов

Колонны, устанавливаемые в средних продольных рядах у торцевых стен, снабжаются дополнительными закладными деталями для крепления приколонных стоек фахверка, а колонны, устанавливаемые в местах расположения вертикальных продольных связей каркаса, — закладными деталями для крепления связей.

Колонны изготовляются из бетона марок М 300, М 400. Рабочая арматура из горячекатаной стали  периодического профиля класса А-3.

По сравнению с колоннами прямоугольного сечения двухветвевые колонны имеют повышенную жёсткость, но они более трудоёмки в изготовлении.

 

 

Двухветвевые колонны для зданий с мостовыми кранами

 

Железобетонные колонны прямоугольного сечения для зданий с мостовыми кранами

Колонны предназначены для одноэтажных однопролётных и многопролётных зданий с пролётами 18 и 24 м, высотой от 8,4 до 10,8 м с фонарями и без фонарей, оборудованных мостовыми кранами общего назначения грузоподъёмностью 10-20 тонн среднего и тяжёлого режимов работы.

Шаг колонн 6 и 12 м.

Колонны имеют консоли для опирания подкрановых балок.

Колонны рассчитаны на нагрузки от покрытия до 700 даН/м2. мостовых кранов и ветра.

Для колонн наружных рядов с шагом 6 м принята нулевая привязка, при шаге 12 м привязка равна 250 мм.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку  — 0,150.

Колонны имеют прямоугольное поперечное сечение как в верхней (надкрановой), так и в нижней  (подкрановой) части.

При опирании на колонны стальных подкрановых балок и стропильных ферм применяются усиленные закладные опорные детали, обеспечивающие лучшее распределение сосредеточенных нагрузок от стальных конструкций.

Колонны внутренних и наружных рядов, устанавливаемые в местах расположения вертикальных связей, должны иметь закладные детали для крепления связей, а расположенные у торцевых стен должны иметь дополнительные закладные детали для крепления приколонных стоек фахверка.

 

 

Железобетонные колонны прямоугольного сечения для зданий с мостовыми кранами

 

Для соединения с фундаментом колонна заводится  в стакан на глубину -1,000 м.

Колонны армированы вязаными каркасами.

Колонны изготовляются из бетона марок М 200, М 300.

Рабочая арматура стержневая из горячекатаной стали  периодического профиля класса А-3.

 

Железобетонные колонны прямоугольного сечения для зданий без мостовых кранов

Колонны разработаны для одноэтажных зданий без мостовых кранов с пролётами от 6 до 36 м, с фонарями и без фонарей, при высоте от уровня чистого пола до низа стропильной конструкции от 3,6 до 9,6 м.

Шаг крайних колонн только 6 м, средних 6 и 12 м в соответствии с унифицированными габаритными схемами.

Колонны могут применяться для однопролётных и многопролётных зданий с наружным и внутренним водоотводом.

В зданиях допускается применение подвесного транспорта грузоподъёмностью до 5 тонн.

Колонны не имеют консолей.

Колонны рассчитаны на нагрузки от покрытия до 520 даН/м2.

Все колонны предназначены для использования в условиях, когда верх фундаментов имеет отметку  — 0,150.

Для крайних колонн принята нулевая привязка к продольной разбивочной оси.

Все колонны имеют прямоугольное, постоянное по высоте сечение.

В колоннах, примыкающих к торцевым стенам, должны быть предусмотрены со стороны стен закладные детали для крепления приколонных стоек фахверка.

Для соединения с фундаментом колонна заводится  в стакан на глубину -0,900 м.

Колонны армированы сварными каркасами.

Кроме того, верхний конец колонны имеет косвенную арматуру в виде горизонтально расположенных плоских стальных стенок.

Колонны изготовляют из бетона марок М 200-М 400.

Рабочая арматура стержневая из горячекатаной стали  периодического профиля класса А-3.

 

                                

Железобетонные колонны прямоугольного сечения для зданий без мостовых кранов

 

Цилиндрические колонны из центрифугированного железобетона

Колонны из центрифугированного железобетона применяются в настоящее время в экспериментальном порядке для зданий без опорных кранов и с кранами грузоподъёмностью до 30 т.

Их внедрение позволяет по предварительным расчётам уменьшить расход бетона на 30-50% и стали – на 20-30% за счёт эффективности кольцевого сечения в статическом отношении и повышения прочности центрифугированного бетона в 1,5-2 раза по сравнению с вибрированным.

Типовое сопряжение железобетонных балок и стропильных ферм с колоннами на стальных прокладных листах, закрепляемых анкерными болтами, связано с изготовлением сложных заклодных деталей, требующих токарной обработки.

Соединение панели с железобетонной колонной без монтажной сварки производится посредством изогнутого в двух плоскостях крюка из стержня ⌀ 16 мм, заведённого в наклонное отверстие ⌀ 18-20 мм в колонне и паз в панели.

Конец крюка, заводимый в колонну, предварительно смазывается цементным раствором или клеящей мастикой.

Паз панели заполняется цементным раствором.

К стальным элементам каркаса крюк приваривается.

Колонны кольцевого сечения целесообразно устанавливать в производственных зданиях с неагрессивной средой при высоте их от пола до низа несущих конструкций  от 3,6 до 14,4 м.

Пролёты 12, 18, 24 и 30 метров. Шаг колонн 6 и 12 метров.

Наружные диаметры колонн – от 300 мм до 1000 мм (через 100 мм), толщина стенок – 50-1000 мм, масса колонн – от 1,2 до 9 т.

 

                                     

Центрифугированные колонны

 

В колоннах кольцевого сечения головки выполняют в виде колец из полосовой стали.

Колонны заделывают на глубину 450 мм при диаметре их 300 мм и 1050 мм – при больших диаметрах.

В связи с особенностями конструкций привязка крайней колонны равна радиусу цилиндра.

При ж/б подстропильных фермах оголовок снижается на 600 мм.

При шаге крайних колонн 12м. подкрановая консоль опускается на 400мм.

Колонны кольцевого сечения можно применять в зданиях с мостовыми кранами и без них.


 Новый сервисСтроительные калькуляторы online

 


Правила привязки к продольным разбивочным осям

⇐ ПредыдущаяСтр 3 из 5Следующая ⇒

Привязка крайних колонн (1-3)

1. Нулевая привязка

 

I

2

3

А 1

 

 

2

шаг шаг 1

5

пролет

I

 

А

 

1 – стена; 2 – колонна каркаса; 3 – несущий элемент покрытия (ферма)

 

Подобная привязка применяется в зданиях без мостовых кранов и в зданиях с мостовыми кранами грузоподъемностью до 30 т. при шаге 6 м и высоте здания 16,2 м; в частности для многоэтажных зданий применяется, как правило, только нулевая привязка.

 

2. Привязка 250

Используется в зданиях, оборудованных мостовыми кранами грузоподъемностью до 50 т и шаге колонн 6 м.

 

 

 

250

А

 

 

шаг шаг

 

 

5 250

 

А

 

3. Привязка 500

Применяется только тогда, когда несущие функции выполняют двухветвевые колонны.

 

4. Привязка средних колонн

Привязку средних колонн продольных рядов выполняют так, чтобы геометрические оси колонн совпадали с продольной разбивочной осью.

 

 

 

 

В В

 

 

шаг шаг

 

 

Правила привязки к поперечным разбивочным осям

При привязке средних колонн к торцевым стенам и поперечным разбивочным осям геометрические оси сечений колонн (за исключением колонн в торцах зданий) совмещаются с поперечными разбивочными осями.

 

 

 

 

Геометрические оси крайних торцовых колонн основного каркаса смещаются по отношению к поперечным разбивочным осям внутрь здания на 500 мм, а внутреннюю поверхность торцевых стен совмещают с поперечной разбивочной осью.

 

 

 

2

 

 

 

500

шаг шаг

 

1 2

 

3 3

 

 

2 2

 

 

500 шаг шаг

 

 

1 2

1. Вопрос – Всегда ли используется привязка 500 к торцевым стенам, и где она еще используется? Рассмотрим три возможных случая.

1.1. Одноэтажные здания

Согласно принятым сеткам разбивочных осей, первая и последняя колонны каждого крайнего продольного ряда в пределах каждого блока имеют привязку к поперечной оси 500 всегда.

 

 

 

500

200

 

А

 

 

 

1.2. Для двухэтажных зданий все колонны первого и последнего продольных рядов привязываются к поперечной оси привязкой 500.

 

 

В

 

500

 

 

 

А

 

 

1.3. Для зданий серии ИН 20/70 (от 2-х до 5-ти этажей) допускается три варианта для торцов (рис. а, б, в).

 

 

В В

 

500

 

 

500

 

 

А А

 

1 2 1

рис. а рис. б

 

 

Поскольку ширина сечения колонны

400 мм, то в этом случае она оказывается

В прислоненной к торцевой стене.

 

 

 

А

 

 

 

 

 

рис. в

1.4. Привязка 500 используется и в случае, если в здании с железобетонным каркасом соседние параллельные продольные пролеты имеют разную высоту. В этом случае по линии их сопряжения устанавливают два ряда железобетонных колонн. Это объясняется тем, что конструкция колонн не предусматривает опирания покрытия на 1 колонну на разных уровнях.

С1 – вставка, размер которой находим по справочнику (от 300 мм при толщине 160 мм до 1100 мм при толщине стены 500 мм).

Если же соседние поперечные пролеты имеют разную высоту, или, например, к производственным помещениям примыкают бытовые, то также устанавливают 2 ряда колонн, но уже одна из них имеет привязку 500 мм.

 

Д

узел 1

Г Г

разная

С1 высота

В В

 

 

Б

 

 

А

 

 

 

500 Размер вставки С2 – от 380 до 970 мм.

 

 

Г

С2

 

 

 

21 22

 

 

2 Вопрос – Как же крепятся торцевые стены к колоннам, если между ними есть расстояние (чистое 300 мм)?

Когда мы говорили о несущих конструкциях, я сознательно не упомянул еще один тип колонн – так называемые колонны фахверков???? или применительно к торцевым стенам – приколонные стойки фахверка.

Они представляют собой два швеллера, обычно N 20, сваренные??? в виде коробки.

Такие стойки фахверка как раз и устанавливают в зазор между торцевой стеной и основной колонной каркаса. К основной колонне стойки фахверка привариваются сваркой с помощью монтажных деталей М-39 не реже чем через 3,6 м по высоте, а уже торцевые панели крепятся к стойкам фахверка.

 

 

 

№27 Система автоматизированного проектирования Auto CAD (либо другая по выбору студента). Назначение, характеристика

 

AutoCAD — двух- и трёхмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. Первая версия системы была выпущена в 1982 году. AutoCAD и специализированные приложения на его основе нашли широкое применение в машиностроении, строительстве, архитектуре и других отраслях промышленности. Программа выпускается на 18 языках. Уровень локализации варьируется от полной адаптации до перевода только справочной документации. Русскоязычная версия локализована полностью, включая интерфейс командной строки и всю документацию, кроме руководства по программированию.

Функциональные возможности

Ранние версии AutoCAD оперировали небольшим числом элементарных объектов, такими как круги, линии, дуги и текст, из которых составлялись более сложные. В этом качестве AutoCAD заслужил репутацию «электронного кульмана», которая остаётся за ним и поныне[1][2][3]. Однако на современном этапе возможности AutoCAD весьма широки и намного превосходят возможности «электронного кульмана»[4].

В области двумерного проектирования AutoCAD по-прежнему позволяет использовать элементарные графические примитивы для получения более сложных объектов. Кроме того, программа предоставляет весьма обширные возможности работы со слоями и аннотативными объектами (размерами, текстом, обозначениями). Использование механизма внешних ссылок (XRef) позволяет разбивать чертеж на составные файлы, за которые ответственны различные разработчики, а динамические блоки расширяют возможности автоматизации 2D-проектирования обычным пользователем без использования программирования. Начиная с версии 2010 в AutoCAD реализована поддержка двумерного параметрического черчения. В версии 2014 появилась возможность динамической связи чертежа с реальными картографическими данными (GeoLocation API).

Текущая версия программы (AutoCAD 2014) включает в себя полный набор инструментов для комплексного трёхмерного моделирования (поддерживается твердотельное, поверхностное и полигональное моделирование). AutoCAD позволяет получить высококачественную визуализацию моделей с помощью системы рендеринга mental ray. Также в программе реализовано управление трёхмерной печатью (результат моделирования можно отправить на 3D-принтер) и поддержка облаков точек (позволяет работать с результатами 3D-сканирования). Тем не менее следует отметить, что отсутствие трёхмерной параметризации не позволяет AutoCAD напрямую конкурировать с машиностроительными САПР среднего класса, такими как Inventor, SolidWorks и другими. В состав AutoCAD 2012 включена программа Inventor Fusion, реализующая технологию прямого моделирования[6].

Средства разработки и адаптации

Широкое распространение AutoCAD в мире обусловлено не в последнюю очередь развитыми средствами разработки и адаптации, которые позволяют настроить систему под нужды конкретных пользователей и значительно расширить функционал базовой системы. Большой набор инструментальных средств для разработки приложений делает базовую версию AutoCAD универсальной платформой для разработки приложений. На базе AutoCAD самой компанией Autodesk и сторонними производителями создано большое количество специализированных прикладных приложений, таких как AutoCAD Mechanical, AutoCAD Electrical, AutoCAD Architecture, GeoniCS, Promis-e, PLANT-4D, AutoPLANT, СПДС GraphiCS, MechaniCS, GEOBRIDGE, САПР ЛЭП, Rubius Elecric Suite и других.

Динамические блоки

Динамические блоки — двуxмерные параметрические объекты, обладающие настраиваемым набором свойств. Динамические блоки предоставляют возможность сохранения в одном блоке (наборе графических примитивов) нескольких геометрических реализаций, отличающихся друг от друга размером, взаимным расположением частей блока, видимостью отдельных элементов и т. п. С помощью динамических блоков можно сократить библиотеки стандартных элементов (один динамический блок заменяет несколько обычных). Также активное использование динамических блоков в ряде случаев позволяет значительно ускорить выпуск рабочей документации. Впервые динамические блоки появились в AutoCAD 2006.

Макрокоманды

Макрокоманды (макросы) в AutoCAD являются одним из самых простых средств адаптации, доступных большинству пользователей. Макросы AutoCAD не следует путать с макросами, создаваемыми посредством VBA.

Action Macros

Action Macros впервые появились в AutoCAD 2009. Пользователь выполняет последовательность команд, которая записывается с помощью инструмента Action Recorder.

Menu Macros

Пользователь имеет возможность создавать собственные кнопки, с помощью которых можно вызывать заранее записанные по определённым правилам серии команд (макросы). В состав макросов можно включать выражения, написанные на языках DIESEL и AutoLISP[12].

DIESEL

DIESEL (Direct Interprietively Evaluated String Expression Language) — язык оперирования строками с небольшим количеством функций (всего 28 функций). Он позволяет формировать строки, которые должны иметь переменный текст, зависящий от каких-либо условий. Результат выводится в виде строки, которая интерпретируется системой AutoCAD как команда. Язык DIESEL используется, в основном, для создания сложных макрокоманд в качестве альтернативы AutoLISP. Особое значение данный язык имеет для версии AutoCAD LT, в котором отсутствуют все средства программирования, за исключением DIESEL[12]. Данный язык впервые появился в AutoCAD R12.

Visual LISP

Visual LISP — среда разработки приложений на языке AutoLISP. Иногда под названием Visual LISP подразумевают язык AutoLISP, дополненный расширениями ActiveX. Среда разработки Visual LISP встроена в AutoCAD начиная с версии AutoCAD 2000. Ранее (AutoCAD R14) она поставлялась отдельно. Среда разработки содержит язык AutoLISP и язык DCL, а также позволяет создавать приложения, состоящие из нескольких программ[7]. Несмотря на название, Visual LISP не является средой визуального программирования.

AutoLISP

AutoLISP — диалект языка Лисп, обеспечивающий широкие возможности для автоматизации работы в AutoCAD. AutoLISP — самый старый из внутренних языков программирования AutoCAD, впервые он появился в 1986 году в AutoCAD 2.18 (промежуточная версия). В AutoLISP реализовано тесное взаимодействие с командной строкой, что способствовало его популяризации среди инженеров, работающих с AutoCAD.




Правила привязки колонн и стен к координационным осям — ТехЛиб СПБ УВТ

Привязка определяет расстояние от модульной, координационной оси до грани или геометрической оси сечения конструктивного элемента. Применяемые правила привязки дают возможность установить взаимозаменяемость конструкций и значительно сократить количество доборных элементов. Ниже рассмотрены основные правила привязки конструктивных элементов к координационным осям, регламентируемые ГОСТ 28984-91.

Привязку конструктивных элементов зданий к координационным осям следует принимать с учетом применения строительных изделий одних и тех же типоразмеров для средних и крайних однородных элементов, а также для зданий с различными конструктивными системами.

Расположение и взаимосвязь конструктивных элементов следует координировать на основе модульной пространственной координационной системы путем привязки их к координационным осям.

Модульная пространственная координационная система и соответствующие модульные сетки с членениями, кратными определенному укрупненному модулю, должны быть, как правило, непрерывными для всего проектируемого здания или сооружения.

Прерывную модульную пространственную координационную систему с парными координационными осями и вставками между ними, имеющими размер
С, кратный меньшему модулю, допускается применять для зданий с несущими стенами в следующих случаях:

1) в местах устройства деформационных швов;

2) при толщине внутренних стен 300 мм и более, особенно при наличии в них вентиляционных каналов; в этом случае парные координационные оси проходят в пределах толщины стены с таким расчетом, чтобы обеспечить необходимую площадь опоры унифицированных модульных элементов перекрытий;

3) когда прерывная система модульных координат обеспечивает более полную унификацию типоразмеров индустриальных изделий, например, при панелях наружных и внутренних продольных стен, вставляемых между гранями поперечных стен и перекрытий.

Привязку конструктивных элементов определяют расстоянием от координационной оси до координационной плоскости элемента или до геометрической оси его сечения.

Привязку несущих стен и колонн к координационным осям осуществляют по сечениям, расположенным в уровне опирания на них верхнего перекрытия или покрытия.

Конструктивная плоскость (грань) элемента в зависимости от особенностей примыкания его к другим элементам может отстоять от координационной плоскости на установленный размер или совпадать с ней.

Расположение координационных осей в плане зданий с несущими стенами: а — непрерывная система с совмещением координационных осей с осями несущих стен; б — прерывная система с парными координационными осями и вставками между ними, в — прерывная система при парных координационных осях, проходящих в пределах толщины стен

Зазор между смежными плитами: lо — координационная длина плиты; l — конструктивная длина плиты; Lо — расстояние между поперечными координационными осями здания; а — привязка боковой грани плиты к координационной оси; б, в — конструктивную длину плит (например, плит, опираемых на стены лестничной клетки крупнопанельных зданий с поперечными несущими стенами) принимают равной расстоянию между осями, увеличенному на необходимую величину а, определяемую в соответствии с принятым конструктивным решением

Привязку несущих стен к координационным осям принимают в зависимости от их конструкции и расположения в здании. Геометрическая ось внутренних несущих стен должна совмещаться с координационной осью; асимметричное расположение стены по отношению к координационной оси допускается в случаях, когда это целесообразно для массового применения унифицированных строительных изделий, например, элементов лестниц и перекрытий.

Внутренняя координационная плоскость наружных несущих стен должна смещаться внутрь здания на расстояние f от координационной оси, равное половине координационного размера толщины параллельной внутренней несущей стены d0в/2 или кратное М, 1/2М или 1/5M. При опоре плит перекрытий на всю толщину несущей стены допускается совмещение наружной координационной плоскости стен с координационной осью.

При стенах из немодульного кирпича и камня допускается размер привязки корректировать в целях применения типоразмеров плит перекрытий, элементов лестниц, окон, дверей и других элементов, применяемых при иных конструктивных системах зданий и устанавливаемых в соответствии с модульной системой.

Привязка стен к координационным осям

Размеры привязок указаны от координационных осей до координационных плоскостей элементов.

Наружная плоскость наружных стен находится с левой стороны каждого изображения.

Внутренняя координационная плоскость наружных самонесущих и навесных стен должна совмещаться с координационной осью или смещаться на размер е с учетом привязки несущих конструкций в плане и особенности примыкания стен к вертикальным несущим конструкциям или перекрытиям.

Привязка колонн к координационным осям в каркасных зданиях должна приниматься в зависимости от их расположения в здании.

В каркасных зданиях колонны средних рядов следует располагать так, чтобы геометрические оси их сечения совмещались с координационными осями. Допускаются другие привязки колонн; в местах деформационных швов, перепада высот и в торцах зданий, а также в отдельных случаях, обусловленных унификацией элементов перекрытий в зданиях с различными конструкциями опор.

Привязку крайних рядов колонн каркасных зданий и крайним координационным осям принимают с учетом унификаций крайних элементов конструкций (ригелей, панелей стен, плит, перекрытий и покрытий) с рядовыми элементами; при этом в зависимости от типа и конструктивной системы здания привязку следует осуществлять одним из следующих способов:

1) внутреннюю координационную плоскость колонн смещают от координационных осей внутрь здания на расстояние, равное половине координационного размера ширины колонны средних рядов b0c/2.

2) геометрическую ось колонн совмещают с координационной осью;

3) внешнюю координационную плоскость колонн совмещают с координационной осью.

Внешнюю координационную плоскость колонн допускается смещать от координационных осей наружу на расстояние f , кратное модулю 3М и, при необходимости, М или 1/2М.

В торцах зданий допускается смещать геометрические оси колонн внутрь здания на расстояние k , кратное модулю 3М и, при необходимости, М или 1/2М.

При привязке колонн крайних рядов к координационным осям, перпендикулярным к направлению этих рядов, следует совмещать геометрические оси колонн с указанными координационными осями; исключения возможны в отношении угловых колонн и колонн у торцов зданий и деформационных швов.

В зданиях в местах перепада высот и деформационных швов, осуществляемых на парных или одинарных колоннах (или несущих стенах), привязываемых к двойным или одинарным координационным осям, следует руководствоваться следующими правилами:

1) расстояние с между парными координационными осями должно быть кратным модулю 3М и, при необходимости, М или 1/2М.

2) при парных колоннах (или несущих стенах), привязываемых к одинарной координационной оси, расстояние к от координационной оси до геометрической оси каждой из колонн должно быть кратным модулю 3М и, при необходимости, М или 1/2М;

3) при одинарных колоннах, привязываемых к одинарной координационной оси, геометрическую ось колонн совмещают с координационной осью.

При расположении стены между парными колоннами одна из ее координационных плоскостей совпадает с координационной плоскостью одной из колонн.

Привязка колонн каркасных зданий к координационным осям:
а — нулевая привязка; б — привязка 250 м или 500 мм в зависимости от объемно-планировочных параметров и конструктивного решения (в зданиях, оборудованных мостовыми кранами грузоподъемностью до 50 т включительно, при шаге колонн 6 м и высоте от пола до низа несущих конструкций покрытия 16,2 и 18 м, а также при шаге колонн 12 м и высоте от 8,4 до 18 м), если требуется увеличить высоту сечения верхней части колонны из условий жесткости или размещения прохода в теле колонны и не удается при этом выполнить привязку 250 мм, в других обоснованных случаях, можно использовать привязку 500 мм;

в — колонны средних рядов; г — две разбивочные оси со вставкой между ними при решении продольных температурных швов между парными колоннами в зданиях с пролетами одной высоты.

Внутренние координационные плоскости стен (на чертеже показаны условно) могут смещаться наружу или внутрь в зависимости от особенностей конструкции стены и ее крепления. Размеры привязок от координационных осей указаны до координационных плоскостей элементов.

В объемно-блочных зданиях объемные блоки следует, как правило, располагать симметрично между координационными осями непрерывной модульной сетки.

В многоэтажных зданиях координационные плоскости чистого пола лестничных площадок следует совмещать с горизонтальными основными координационными плоскостями.

В одноэтажных зданиях координационную плоскость чистого пола следует совмещать с нижней горизонтальной основной координационной плоскостью.

В одноэтажных зданиях, имеющих наклонный пол, с нижней горизонтальной основной координационной плоскостью следует совмещать верхнюю линию пересечения пола с координационной плоскостью наружных стен.

В одноэтажных зданиях с верхней горизонтальной основной координационной плоскостью совмещают наиболее низкую опорную плоскость конструкции покрытия.

Привязку элементов цокольной части стен к нижней горизонтальной основной координационной плоскости первого этажа и привязку фризовой части стен к верхней горизонтальной основной координационной плоскости верхнего этажа принимают с таким расчетом, чтобы координационные размеры нижних и верхних элементов стен были кратными модулю 3М и, при необходимости, М или 1/2М.

Привязка колонн и стен к координационным осям в местах деформационных швов

Модульная (координационная) высота этажа: 1 — координационная плоскость чистого пола; 2 — подвесной потолок

Расположение конструктивных элементов и деталей в плане и в разрезе здания устанавливают при проектировании путем, так называемой привязки их к модульным разбивочным осям. Привязка характеризуется расстоянием от модульных разбивочных осей до грани или геометрической оси элемента. Привязку наружных несущих стен выполняют так, чтобы внутренняя грань стены размещалась на расстоянии от модульной разбивочной оси, равном половине номинальной толщины внутренней несущей стены. Привязка должна быть кратна М или М-2. Допускается совмещение внутренней грани стены с модульной разбивочной осью в целях унификации элементов перекрытий («нулевая привязка»).

Во внутренних стенах геометрическую ось совмещают с модульной разбивочной осью. Отступление от этого правила допускается для стен лестничных клеток и стен с вентиляционными каналами. В наружных самонесущих и навесных стенах внутреннюю грань, как правило, совмещают с модульной разбивочной осью («нулевая привязка») . В каркасных зданиях геометрический центр сечения средних рядов совмещают с пересечением модульных разбивочных осей. При привязке крайних рядов колонн (в том числе в торцах здания) допускаются следующие два варианта:

а) наружную грань колонн совмещают с модульной разбивочной осью (краевая или нулевая привязка), если пролётные конструкции (ригель, балка, ферма т.д.) перекрывают колонну и когда это целесообразно по условиям раскладки элементов перекрытий или покрытий;

б) внутреннюю грань колонн размещают от модульной разбивочной оси на расстоянии, равном половине толщины внутренней колонны при консольном типе опирания конструкции, когда ригели опираются на консоли колонн или плиты перекрытий на консоли ригелей.

В одноэтажных промышленных зданиях с тяжелыми крановыми нагрузками (от 30 до 50 т.) наружные грани колонн крайних рядов и внутренние поверхности стен смещают наружу от модульной разбивочной оси на расстояние кратное М и М-2 (как правило, на 250 мм). Геометрические оси торцовых колонн основного каркаса одноэтажных промышленных зданий смещают с поперечных разбивочных осей внутрь здания на 500 мм, а внутренние поверхности торцовых стен совмещают с осями («нулевая привязка»), что связано с особенностями конструктивных узлов торцовых стен.

В одноэтажных производственных зданиях колонны средних рядов располагают так, чтобы геометрические оси сечения колонн совпадали с продольными и поперечными модульными координационными осями. Исключения допускаются относительно колонн возле температурных швов и перепадов высот.

Схема и план одноэтажного промышленного здания с разбивочными осями и их маркировками

При использовании в качестве несущих конструкций стропильных ферм и балок колонны крайних рядов и наружные стены привязывают к продольным координационным осям по таким правилам:

  • внешнюю грань колонн совмещают с координационной осью (нулевая привязка), а внутреннюю плоскость стены смещают наружу на 30 мм в зданиях следующих типов: в зданиях без мостовых кранов со сборным железобетонным каркасом при шаге крайних колонн 6 или 12 м, а также в зданиях со стальным или смешанным каркасом при шаге колонн крайних рядов 6 м; в зданиях с кранами грузоподъемностью до 20 т и со сборным железо-бетонным или смешанным каркасом при шаге крайних колонн 6 м и при высоте не более 14,4 м; в зданиях с ручными мостовыми кранами;
  • внешнюю грань колонн смещают наружу с координационной оси на 250 мм, а между внутренней плоскостью стены и гранью колонн предусматривают зазор 30 мм в таких зданиях: без мостовых кранов со стальным или смешанным каркасом при шаге крайних колонн 12 м; с кранами при шаге колонн крайних рядов 12 м, в зданиях со стальным каркасом при шаге колонн 6 м, а также в зданиях с кранами грузоподъемностью свыше 20 т и сборным железобетонным или смешанным каркасом при шаге крайних колонн 6 м и высоте 12 м и более; при наличии проходов вдоль подкрановых путей.

     

Привязка колонн и стен: а, б, в к продольным разбивочным осям; г – к поперечным разбивочным осям; д – привязка несущих стен без пилястр; и – то же, с пилястрами

Колонны и наружные стены из панелей привязывают к крайним поперечным координационным осям по линиям поперечных температурных швов с соблюдением таких требований:

  • в торцах зданий геометрические оси сечения колонн основного каркаса смещают внутрь на 500 мм с координационной оси, а внутренние поверхности стен — наружу на 30 мм с той же оси;
  • по линиям поперечных температурных швов геометрические оси сечения колонн смещают по 500 мм в обе стороны от оси шва, совмещаемого с поперечной координационной осью.

Оси, пересекающие пролеты, называются поперечными и обозначаются цифрами; система пересекающихся осей здания в плане образует сетку координационных осей, которая служит системой координат для плана здания. Применение при строительстве зданий типовых конструкций требует строго определенного их расположения (привязки) по отношению к. координационным осям. Под привязкой понимают расстояние от координационной оси (продольной, поперечной) до грани или геометрической оси конструктивного элемента. Все виды оборудования привязываются на плане цеха размерами к этим же координационным осям здания.

Для унификации и взаимозаменяемости конструкций колонны и стены располагают относительно координационных осей с соблюдением определенных правил привязки. Наружные грани крайних колонн и внутренние поверхности стен совмещают с продольными координационными осями. Такая привязка называется нулевой и осуществляется в зданиях без мостовых кранов и в зданиях, оборудованных мостовыми кранами грузоподъемностью до 30 т, при шаге колонн 6 м и высоте от пола до низа несущих конструкций покрытия менее 16,2 м. Наружные грани колонн крайнего ряда и внутренние поверхности стен смещают относительно продольных координационных осей на 250 мм в зданиях, оборудованных мостовыми кранами грузоподъемностью до 50 т.

Привязка крайних колонн и наружных стен к продольным разбивочных осям в зданиях

Основные размеры здания в плане измеряются между координационными осями, которые образуют геометрическую основу плана здания. Оси, идущие вдоль пролетов здания и располагаемые параллельно нижней кромке чертежа, называются продольными и обозначаются заглавными буквами русского алфавита. Привязку к поперечным координационным осям колонн и торцовых стен осуществляют по следующим правилам: геометрические оси сечения колонн, за исключением колонн в торцах здания и колонн, примыкающих к температурным швам, должны совмещаться с поперечными координационными осями (нулевая привязка), геометрические оси торцовых колонн основного каркаса нужно смещать с поперечных координационных осей внутрь здания на 500 мм, внутренние поверхности торцовых стен должны совпадать с поперечными координационными осями.

Привязка торцовой колонны и стены к поперечной разбивочной оси

Привязка несущих наружных стен из крупных блоков и кирпича к продольным разбивочным осям здания

Привязку несущих наружных стен осуществляют по следующим правилам: при непосредственном опирании на стены плит покрытий внутреннюю поверхность стены нужно отнести от продольной координационной оси внутрь здания на 150 мм для стен из крупных блоков и на 130 мм для кирпичных стен. В случае опирания на стены несущих конструкций балок, ферм поверхность стен смещают от продольной оси внутрь здания на 300 мм для блочных стен при их толщине 400 мм и на 250 мм — для кирпичных стен при толщине 380 мм. При кирпичных стенах толщиной 380 мм с пилястрами 130 мм расстояние от продольной оси до внутренней поверхности стены должно быть равно 130 мм.

Привязка колонн каркаса в местах устройства швов осуществляется следующим образом. В зданиях с железобетонным каркасом в местах расположения швов устанавливают парные колонны. При этом ось температурного шва должна совпадать с поперечной координационной осью, а оси колонн смещают относительно координационной оси на 500 мм.

Продольные температурные швы в зданиях с железобетонным каркасом следует устраивать на двух колоннах со вставкой, в зданиях с цельнометаллическим и смешанным каркасом температурные швы располагают на одной колонне.

Варианты привязки колонн в местах продольных температурных швов в зданиях при размерах между осями

Перепад высот между пролетами одного направления в здании с железобетонным каркасом рекомендуется осуществлять на двух колоннах со вставкой. Конструкцию примыкания двух взаимно перпендикулярных пролетов следует также осуществлять на двух колоннах со вставкой. При этом ось колонн продольных пролетов, примыкающих к поперечному пролету, смещают с поперечной координационной оси на 500 мм.

Деформационные швы. В конструкциях зданий большой протяженности вследствие изменения температур в летнее и зимнее время появляются значительные деформации, вызывающие напряжения, способные разрушить здания. Для предотвращения этого явления здания делят на температурные блоки, между которыми устраивают так называемые температурные швы как в продольном, так и в поперечном направлении. Размеры температурных блоков принимают в зависимости от типа и конструкции зданий. Наибольшие расстояния (м) между температурными швами в каркасных зданиях, которые могут быть допущены без проверочного расчета.


Кроме температурных деформаций здание может давать неравномерную осадку в случае расположения его на неоднородных грунтах или в случае резко отличающейся эксплуатационной нагрузки по длине здания. В этом случае для избежания осадочных деформаций устраивают осадочные швы. При этом фундаменты делают независимыми, а в надземной части здания осадочный шов совмещают с температурным или со швом примыкания (примыкание зданий различной этажности, старого здания к новому). Деформационные швы устраивают в стенах и покрытиях, с тем чтобы обеспечить возможность взаимного смещения смежных частей здания как в горизонтальном, так и в вертикальном направлениях без нарушения термического сопротивления шва и его водоизоляционных свойств.

При устройстве продольных температурных швов или перепаде высот параллельных пролетов на парных колоннах следует предусматривать парные модульные координационные осы со вставкой между ними. В зависимости от размера привязки колонн в каждом из смежных пролетов размеры вставок между парными координационными осями по линиям температурных швов в зданиях с пролетами одинаковой высоты и с покрытиями по стропильным балкам (фермам) принимают равными 500, 750, 1000 мм.

Привязка колонн и стен одноэтажных зданий к координатным осям: а – привязка колонн к средним осям; б, в – то же, колонн и стен к крайним продольным осям; г, д, е – то же, к поперечным осям в торцах зданий и местах поперечных температурных швов; ж, з, и — привязка колонн в продольных температурных швах зданий с пролетами одинаковой высоты; к, л, м – то же, при перепаде высот параллельных пролетов, н, о – то же, при взаимно перпендикулярном примыкании пролетов; п, р, с, т – привязка несущих стен к продольным координатным осям; 1 – колонны повышенных пролетов; 2 – колонны пониженных пролетов, которые примыкают торцами к повышенному поперечному пролету

Размер вставки между продольными координационными осями по линии перепада высот параллельных пролетов в зданиях с покрытиями по стропильным балкам (фермам) должен быть кратным 50 мм:

  • привязки к координационным осям граней колонн, обращенных в сторону перепада;
  • толщины стены из панелей и зазора 30 м между ее внутренней плоскостью и гранью колонн повышенного пролета;
  • зазора не менее 50 мм между внешней плоскостью стены и гранью колон пониженного пролета.

При этом размер вставки должен быть не менее 300 мм. Размеры вставок в местах примыкания взаимно перпендикулярных пролетов (пониженных продольных к повышенному поперечному) составляют от 300 до 900 мм. Если есть продольный шов между пролетами, которые примыкают к перпендикулярного пролету, этот шов продлевают в перпендикулярный пролет, где он будет поперечным швом. При этом вставка между координационными осями в продольном и поперечном швах равна 500, 750 и 1000 мм, а каждую из парных колонн по линии поперечного шва нужно смещать с ближайшей оси на 500 мм. Если на наружные стены опираются конструкции покрытия, то внутреннюю плоскость стены смещают внутрь от координационной оси на 150 (130) мм.

Колонны к средним продольным и поперечным координационным осям многоэтажных зданий привязывают так, чтобы геометрические оси сечения колонн совпадали с координационными осями, за исключением колонн по линиям температурных швов. В случае привязки колонн и наружных стен из панелей к крайним продольным координационным осям зданий внешнюю грань колонн (в зависимости от конструкции каркаса) смещают наружу с координационной оси на 200 мм или совмещают с этой осью, а между внутренней плоскостью стены и гранями колонн предусматривают зазор 30 мм. По линии поперечных температурных швов зданий с перекрытиями из сборных ребристых или гладких многопустотных плит предусматривают парные координационные оси с вставкой между ними размером 1000 мм, а геометрические оси парных колонн совмещают с координационными осями.

В случае пристройки многоэтажных зданий к одноэтажным не допускается взаимно смешивать координационные оси, перпендикулярные к линии пристройки и общие для обеих частей сблокированного здания. Размеры вставки между параллельными крайними координационными осями по линии пристройки зданий назначают с учетом использования типовых стеновых панелей — удлиненных рядовых или доборных.

Привязка колонн и стен многоэтажных зданий к координатным осям: а – привязка колонн к крайним осям; б, в – привязка колонн и стен к крайним продольным осям; г, д – то же, в торцах зданий; е, ж – привязка колонн по линиям поперечных температурных швов

Читать по теме:

GCM 250 Лекция — GCM 250 Переплет и окончательная обработка — Ryerson

Лекционные заметки для GCM 250, лекции 1–4 включены.

Комментарии

  • Пожалуйста, войдите или зарегистрируйтесь, чтобы оставлять комментарии.

Предварительный текст

GCM 250 Лекция 1 Терминология по размеру листа  PARS — размер родительского листа  SSS — размер чулочного листа  PSS — Размер печатного листа  FSS — Размер готового листа Процессы сборки переплетенных книг  Сшивание седла (проволока) [наименее дорогое]  Идеальное (клейкое) переплетение  Механическая (катушечная) привязка  Переплет (твердая обложка) [самый дорогой] Макет страницы Голова Корешок или край переплета Для края или лица Нога или хвост Размеры продукции в Северной Америке  B / C — Визитные карточки 2х3.5 ’  P / C — Открытка размером 4 x 6 футов  Дайджест — 5,5 x 8,5 дюймов  Letter 8,5 x 11 дюймов  Legal 8,5 x 14 дюймов  Таблоид размером 11 x 17 дюймов Лекция 2 Складывающееся определение  Остроконечное сгибание бумаги под давлением при подготовленном или неподготовленном сгибе. точка  Линия сгиба называется сгибом  Подготовка линии фальцовки  Переплетный лист Послепечатная терминология  привязка  Отделка  Рассылка, фулфилмент  Почтовая пресса  Переплетное дело  Книжный художник (изготовление книг, изготовление коробок, изготовление бумаги, декорирование бумаги, высокая печать) Условия аккуратного складывания  Ненапечатанные страницы могут быть более снисходительными  Квадратный переплетный лист бронирования  Использование реестра из предыдущего восходящего процесса  Зерновое направление  Подготовка линии сгиба Складывание неправильное и может привести к отказу покупателя, если есть  Промахи  Кривые складки  Плохие составы  Плохие кроссоверы  Биговка  Растрескивание  Собачьи уши  Разделение страницы на сгибе  Ползучесть Классификация папок листовых машин  Принцип ножа папки  Принцип пряжки папки  Комбинированные фальцевальные машины  Специальные папки Преимущества раскладывания пряжки  Высокая производительность    Хорошая точность Требуется мало места Может производить подпись до 128 страниц Недостатки  Механически более сложный  Меньшая изменчивость складывания  Более низкая производительность в зависимости от скорости Комбинированная папка  УЗНАЙТЕ, КАК ЭТО MF РАБОТАЕТ Преимущества комбинированного складывания  Требует меньше места, чем сопоставимые машины для складывания пряжек.  Более дешевый, чем сопоставимые машины для складывания пряжек  Бумагу с экстремальными характеристиками складывать легче, чем при пряжке. машины Недостатки  Более низкая производительность, чем у машин для фальцевания пряжек  Многочисленные возможности складывания, но не такие разнообразные, как складывание нескольких станций с пряжкой машины Различные типы кормушек  Роторный питатель сваи  Вертикальный питатель сваи  Питатели ручьев  Ящичные всасывающие питатели Подсчет очков  Подсчет очков — это типичный метод подготовки линии сгиба для обложек и брошюр. o Текстовая бумага от 100 # и выше o Обложка весовой бумаги o Сильное покрытие чернилами o Фальцовка неправильной текстуры o Ксерография — листы, отпечатанные тонером, умирают от тонерного масла Подсчет очков (продолжение) Существует множество методов & amp; виды оборудования, используемого для подсчета очков o Поворотный инструмент (колесо), нагруженный на вал  Фальцевальные машины, автономные / настольные биговальные машины, роллеры и т. Д. o Использование правил и матриц (высокая и офсетная печать) o Глубина надреза важна для получения достаточной подготовки линии сгиба без разрезания Лист o Качество оценок будет варьироваться в зависимости от ряда факторов. Высокая печать и умереть автомат для резки производит лучшие результаты. Перфорация  Перфорация — это процесс пробивки отверстий для выпуска воздуха, который в противном случае в ловушке внутри сложенной подписи  Застревание приводит к складкам  Перфорация обычно выполняется на голове Системы доставки  Потоковые доставки  Вертикальные (горизонтальные) поставки  Вертикальные штабелированные поставки  Пакетные доставки Лекция 3 Складывание продолж.Выбрать продукты Для продуктов Select Specialty требуется больше, чем просто складывание  Карманные папки  Конверты  Карманы для фотографий  Обложки автомобильной страховой книжки  Формы заявки на кредитную карту  И т. Д. Фармацевтические папки  Миниатюрные брошюры, используемые для исключения (пример специализированного продукта) Биговщики  Используется для биговки или перфорации бумаги или легкого переплета.  Подготавливает бумагу для последующей фальцовки под прямым углом  Сгибающее лезвие создает резкую продольную складку, отмечая точную складку для последующий сгиб под прямым углом  Особенно полезно на следующей станции, если есть несколько параллельных складок, например складки букв и складки гармошкой Обрезка (резка)  Разделение множественных разрезов одним разрезом (глухая обрезка / разделительный разрез)  Для толстых изделий используйте двойной дисковый нож (ножницы) на верхнюю и нижнюю части; нижний вал Обрезка кромок (продольная резка) .

Duplo DB-250 Binding Machine Руководство по обслуживанию PDF Посмотреть / Скачать

Загрузите руководство по обслуживанию переплетной машины Duplo DB-250 бесплатно или просмотрите его онлайн на All-Guides.com.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *