Содержание

Расчет деревянной балки перекрытия согласно СП 64.13330.2011

Примечание: Если нагрузка на балку вам уже известна, а вникать в теоретические основы расчета у вас нет никакого желания, то можете сразу воспользоваться калькулятором. Впрочем воспользоваться калькулятором можно и после того, как определены нагрузка и расчетное сопротивление.

Итак планируется междуэтажное перекрытие по деревянным балкам для дома, имеющего следующий план:

Рисунок 515.1. План помещений второго этажа.

1. Общий Расчет балки перекрытия санузла на прочность

Для того, чтобы рассчитать деревянную балку на прочность согласно требований СП, следует сначала определить множество различных данных на основании общих положений расчета балок.

1.1. Виды и количество опор

Деревянные балки будут опираться на стены. Так как мы не предусматриваем никаких дополнительных мер, позволяющих исключить поворот концов балки на опорах, то опоры балки следует рассматривать, как шарнирные (рисунок 219.2).

Рисунок 219.2.

Примечание

: Так как концы балок, опирающиеся на каменные стены, для уменьшения риска гниения балок как правило обрабатывают гидроизоляционными материалами, имеющими относительно малый модуль упругости, при этом глубина заделки концов балки в стену не превышает 15-20 см, то даже если на опорные участки таких балок будет опираться каменная кладка, то это все равно не позволяет рассматривать такое опирание, как жесткое защемление.

1.2. Количество и длина пролетов

Согласно плану, показанному на рисунке 515.1, для перекрытия в санузле (помещение 2-1) длина пролета будет составлять около:

l = 4.18 — 0.4 = 3.78 м

При этом балки будут однопролетными, а значит статически определимыми.

1.3. Система координат

Расчет будем производить используя стандартную систему координат с осями х, у и

z. При этом балка рассматривается как стержень, нейтральная ось которого совпадает с осью координат х, а начало координат совпадает с началом балки. Соответственно длина балки измеряется по оси х.

1.4. Действующие нагрузки

Все возможные расчетные плоские нагрузки для такого перекрытия мы уже собрали:

qрп = 212.46 кг/м2

qрв = 195 кг/м2

Примечание: при объемной чугунной ванне, установленной посредине балок перекрытия, расчетное значение временной нагрузки может быть значительно больше.

Однако такие значения нагрузок можно использовать только при расчете монолитного перекрытия. В нашем же случае балки перекрытия представляют собой крайние или промежуточные опоры для многопролетных балок — досок настила и остального пирога перекрытия.

Таким образом для более точного определения нагрузки на наиболее загруженную балку следует точно знать, доски какой длины будут использоваться в качестве настила по балкам. Если такого знания нет, то я рекомендую рассматривать наиболее неблагоприятный вариант, а именно — доски будут перекрывать 2 пролета, т.е. опираться на 3 балки перекрытия.

В этом случае наиболее нагруженной будет балка — промежуточная опора для таких досок — двухпролетных балок, соответственно значения нагрузок для такой балки следует увеличить в 10/8 = 1.25 раза или на 25%, тогда:

qрп = 212.46·1.25 = 265.58 кг/м2

qрв = 195·1.25 = 243.75 кг/м2

Если доски будут перекрывать 3 пролета, то значения нагрузок следует увеличить в 1.1 раза (253.4.4). При 4 пролетах — в 8/7 = 1.15 раза (262.7.10) и так далее, тем не менее остановимся на первом варианте, так оно надежнее.

Так как на рассчитываемое перекрытие действует только одна кратковременная нагрузка (особые нагрузки типа взрывной волны или землетрясения мы для нашего перекрытия не предусматриваем), то при рассмотрении основного сочетания нагрузок используется полное значение кратковременной нагрузки согласно СП 20.13330.2011 «Нагрузки и воздействия» п.1.12.3, тогда:

qр = 265.58 + 243.75 = 509.33 кг/м2

Так как балки рассчитываются не на плоскую, а на линейную нагрузку, то при шаге балок 0.6 м расчетная линейная нагрузка на балку составит:

qрл = 509.33·0.6 = 305.6 кг/м

1.5. Определение опорных реакций и максимального изгибающего момента

Так как загружение балки равномерно распределенной нагрузкой — достаточно распространенный частный случай, то для определения опорных реакций можно воспользоваться готовыми формулами:

А = В = ql/2 = 305.6·3.78/2 = 577.6 кг

Мmax = ql2/8 = 305.6·3.782/8 = 545.82 кгм или 54582 кгсм

1.6. Построение эпюр поперечных сил и изгибающих моментов

В нашем частном случае, когда нагрузка является равномерно распределенной, можно опять же воспользоваться готовыми эпюрами, благо их для такого случая построено уже множество:

Рисунок 149.7.2. Эпюры поперечных сил и моментов, действующих в поперечных сечениях 

Для большей наглядности можно нанести полученные значения поперечных сил (опорные реакции — это и есть значения поперечных сил в начале и в конце балки) и максимального изгибающего момента на эпюры.

Примечание: В данном случае эпюра моментов помечена знаком минус, просто потому, что откладывается снизу от оси координат х. А вообще знак для моментов принципиального значения не имеет, так как при действии момента всегда есть и растянутая и сжатая зона поперечного сечения. Таким образом наиболее важно понимать, где при действии момента будет растянутая, а где сжатая зона сечения. Впрочем для деревянных балок это большого значения не имеет.

1.7. Определение требуемого момента сопротивления

Согласно СП 64.13330.2011 «Деревянные конструкции» п.6.9 расчет изгибаемых элементов, обеспеченных от потери устойчивости плоской формы деформирования, следует производить, исходя из следующего условия:

M/Wрасч ≤ Rи (или Rид.ш.) (533.1)

где М — расчетное значение изгибающего момента. В нашем случае (для балки постоянного сечения при действии равномерно распределенной нагрузки) достаточно проверить балку на действие максимального изгибающего момента. В общем случае при достаточно сложной комбинации различных нагрузок или для балок переменного сечения могут потребоваться проверки на прочность в нескольких сечениях. Для определения момента в этих сечениях и используется эпюра моментов.

Rи — расчетное сопротивление древесины изгибу. Определение расчетного сопротивления древесины в зависимости от различных факторов — отдельная большая тема. В данном случае ограничимся тем, что при использовании балок из цельной древесины — сосны 2 сорта расчетное сопротивление изгибу для балок перекрытия санузла может составлять Rи = 113.3 кгс/см2.

Rи

д.ш. — расчетное сопротивление для элементов из однонаправленного шпона, но так как в данном случае мы рассматриваем балку из цельной древесины, то возможные значения клееных элементов нас не интересуют

Wрасч— расчетный момент сопротивления рассматриваемого поперечного сечения. Для элементов из цельной древесины Wрасч = Wнт, где Wнт — момент сопротивления рассматриваемого сечения с учетом возможных ослаблений — момент сопротивления нетто.

Так как для рассчитываемых балок не предусматривается никаких ослаблений в зоне максимального загружения (гвозди крепления досок перекрытия не в счет), то требуемый по расчету момент сопротивления поперечного сечения балки можно определить, преобразовав соответствующим образом формулу (533.1):

Wрасч ≥ М/Rи = 54582/113.3 = 481.73 см3

1.8. Определение геометрических параметров сечения

Так как мы предварительно приняли прямоугольное поперечное сечение балок, имеющее размеры b — ширину и h — высоту, то задавшись значением одного из этих параметров, мы можем определить значение другого.

Если принять ширину балок 10 см, исходя из сортамента производимых в ближайших окрестностях лесоматериалов, то требуемую высоту поперечного сечения можно определить по формуле:

(147.4)

hтр = √6·481.73/10 = 17 см.

Исходя из все того же сортамента, высоту балок следует принять не менее 20 см. Также можно уменьшить шаг балок, например при шаге балок 0.45 м значение расчетного момента сопротивления составит не менее

Wрасч = 0.5·481.73/0.6 = 361.3 см

3

и тогда минимально допустимая высота сечения

hтр = √6·361.3/10 = 14.72 см.

А значит можно принять высоту балок равной 15 см. Впрочем, возможны и другие варианты подхода, например, более точно учесть количество пролетов, перекрываемых досками, это позволит уменьшить значение нагрузки на 10-15%.

2. Определение прогиба

Так как для однопролетных балок с шарнирными опорами значение прогиба может стать определяющим, то я рекомендую определять прогиб сразу после определения параметров сечения.

При действии равномерно распределенной нагрузки на однопролетную балку с шарнирными опорами значение прогиба без учета влияния поперечных сил можно определить по следующей формуле:

f0 = 5ql4/(384EI)

где q — нормативное значение нагрузки.

Значения плоских нормативных нагрузок, необходимые для определения прогиба, мы уже определили при сборе нагрузок. Они составляют:

qнп = 171.6 кг/м2

qнв = 150 кг/м2

Соответственно с учетом шага балок 0.6 м и перераспределения опорных нагрузок линейная нормативная нагрузка составляет:

qнл = 0.6·1.25(171.6 + 150) = 241.2 кг/м (2.412 кг/см)

Е = 105 кгс/см2, модуль упругости древесины, принимаемый по СП 64.13330.2011 «Деревянные конструкции».

I = bh3/12 = 10·203/12 = 6666.67 см4, — момент инерции рассматриваемого прямоугольного сечения балки.

Тогда

f0 = 5·2.412·3784/(384·105·6666.67) = 0.962 см

При действии равномерно распределенной нагрузки на балку значение коэффициента с, учитывающего влияние поперечных сил на значение прогиба, составит согласно таблицы Е.3: 

с = 15.4 + 3.8β (533.2)

Так как высота балки у нас постоянная величина, то β =1 = k и соответственно

с = 15.4 + 3.8 = 19.2

 Тогда при высоте балки h = 0.2 м и пролете l = 3.78 м (h/l = 0.053) значение прогиба с учетом поперечных сил составит:

f = fo[1 + c(h/l)2]/k = 0.962[1 + 19.2·0.0532]/1 = 1.01 см

Предельно допустимое значение прогиба деревянных балок междуэтажного перекрытия согласно таблицы 19 СП 64.13330.2011 «Деревянные конструкции» составляет fд = l/250 = 387/250 = 1.55 см.

Необходимые требования по максимально допустимому прогибу нами соблюдены, мы можем продолжать расчет.

1.9. Проверка по касательным напряжениям (прочность по скалыванию)

При изгибе в сечениях, поперечных и параллельных нейтральной оси балки, будут действовать касательные напряжения. В деревянных балках это может привести к скалыванию древесины вдоль волокон. поэтому касательные напряжения т не должны превышать расчетного сопротивления Rск скалыванию:

т = QS’бр/bрасIбр ≤ Rск (Rскд.ш.) (533.3)

где Q — значение поперечной силы в рассматриваемом поперечном сечении, определяемое по эпюре моментов. В нашем случае максимальные касательные напряжения будут действовать на опорах балки, Q = 557.6 кг

S’бр — статический момент брутто (т.е. без учета возможных ослаблений сечения) сдвигаемой (скалываемой) части сечения. Статический момент определяется относительно нейтральной оси балки.

bрас — расчетная ширина сечения рассматриваемого элемента конструкции. В данном случае у нас ширина балки равна bрас = 10 см.

Rск — расчетное сопротивление древесины скалыванию. Как и при определении расчетного сопротивления изгибу значение, определенное по таблице 3, следует дополнительно умножить на ряд коэффициентов, учитывающих различные факторы. Впрочем факторы у нас не изменились и потому согласно п.5.а) и определенным ранее коэффициентам расчетное сопротивление скалыванию составит:

Rск = 1.6·0.9·0.95 = 1.368 МПа (13.95 кгс/см2)

Iбр — момент инерции брутто, т.е. опять же определяемый без учета возможных ослаблений сечения. В данном случае момент инерции брутто совпадает с определенным ранее моментом инерции.

Впрочем, для балок прямоугольного сечения нет большой необходимости при подобных расчетах определять как статический момент полусечения, так и момент инерции. По той причине, что максимальные касательные напряжения действуют посредине высоты балки и составляют:

т = 1.5Q/F (270.3)

Тогда

т = 1.5·557.6/(10·20) = 4.182 кг/см2 < 13.95 кг/см2

Требование по прочности по скалыванию соблюдается, причем с 3-х кратным запасом.

На этом расчет деревянной балки постоянного сплошного сечения, устойчивость которой из плоскости изгиба обеспечена другими элементами конструкции, можно считать законченным. Во всяком случае никаких дополнительных требований Сводом Правил в таких случаях не предъявляется.

Тем не менее я рекомендую дополнительно проверить опорные участки балки

1.10. Проверка на прочность опорных участков балки

Любая балка в отличие от показанной на рисунке 219.2 модели имеет опорные участки. На этих опорных участках действуют нормальные напряжения в сечениях, параллельных нейтральной оси балки.

Распределение нормальных напряжений на этом участке зависит от множества различных факторов, в частности от угла поворота поперечного сечения балки на опоре, длины опорных участков и т.п.

Если для упрощения расчетов принять линейное изменение нормальных напряжений от максимума до 0, то примерное значение максимальных нормальных напряжений на опорных участках можно определить по следующей формуле:

σу = 2Q/(blоп) ≤ Rcм90 (533.4)

где Q — значение поперечной силы согласно эпюры «Q», как и прежде оно составляет Q = 557.6 кг;

b — ширина балки b = 10 см;

lоп — длина опорного участка, из конструктивных соображений примем lоп = 10 см;

2 — коэффициент учитывающий неравномерность распределения напряжений на опорном участке;

Rcм90 — расчетное сопротивление смятию поперек волокон. Согласно п.4.а) таблицы 3 и с учетом поправочных коэффициентов расчетное сопротивление смятию поперек волокон составит:

Rсм90 = 4·0.9·0.95 = 3.42 МПа (34.8 кгс/см2)

Тогда

2·557.6/(10·10) = 11.15 кг/см2 < 34.8 кг/см2

Как видим условие по прочности на опорных участках также соблюдается и снова с хорошим 3-х кратным запасом.

И теперь расчет балки перекрытия санузла можно действительно считать законченным.

Дополнительные проверки на прочность в местах действия сосредоточенных нагрузок здесь не требуются как минимум потому, что при принятой расчетной схеме сосредоточенные нагрузки отсутствуют. Да и рассматривать плоское напряженное состояние балки для определения максимальных напряжений при постоянном сплошном прямоугольном сечении балки и принятой схеме нагрузок и опор на мой взгляд также не требуется.

Методология и формулы расчета деревянных балок перекрытия на прочность и прогиб- Обзор +Видео

Нагрузка на балки перекрытияДерево до сих пор пользуется огромной популярностью в строительстве домов, и ведь не зря. Древесина обладает такими уникальными качествами как прочность, надежность, долговечность, экологическая чистота, а хвойные породы, благодаря наличию в составе смол, обогащают воздух, дезинфицируют его, создают благоприятный микроклимат в помещении.

Материал применяется для обустройства перекрытий в жилых домах, а для правильного расчета деревянной балки многие пользуются либо онлайн калькулятором, либо услугами профессионалов. Расчёты необходимо проводить в обязательном порядке, это обеспечивает длительный срок эксплуатации.

Для строительства деревянного дома, специалисты совершают расчет нагрузки на деревянные балки. Кроме того, в строительной сфере есть понятие определения прогиба досок.

На любом этапе застройки зданий необходимо проводить математические расчеты

Расчеты необходимы для всех используемых элементов, в противном случае вас постигнет неудача. Прежде чем начать закупку материалов для строительства, проведите расчет прогиба деревянных балок. Это обеспечит надежность будущей постройки, а вы будете уверены в качественном выполнении работ.

Определение прогиба и несущей способности перекрытий дело непростое, поэтому к нему нужно подойти со всей ответственностью. Расчёты помогают определить какое количество материала необходимо закупить, а также, каких размеров должны быть балки.

Измерить пролет

Первым делом необходимо измерить пролёт, который будет перекрываться балками из древесины. Также, не забывайте продумать все нюансы способов закрепления элементов конструкции. В этой ситуации, вам необходимо определит, как глубоко элементы фиксации будут погружены в стены. Это позволит вам сделать точный расчет несущих способностей деревянной балки.

Длина деревянных балок, даст вам возможность для точного расчета необходимых параметров, в том числе и прогиба. Эти показатели обусловливаться длиной пролёта. Также, важно учитывать и то, что расчет производится с неким запасом.

Примечание.

Балки из дерева, заходящие в стены, рассчитываются с учетом данного параметра.

Учитывать материал

Делая расчет деревянной балки на прочность, вы должны брать во внимание материал, который используется для застройки. В кирпичных домах, балки перекрытия устанавливаются в специальные гнезда, с глубиной 10 – 15 см. для деревянных домов есть иные параметры СНиП. В данном случае, глубина гнезд должна составлять 7 – 9 см. Параметры глубины гнезд определяют несущую способность балок.

Использование при установке перекрытий хомутов или кронштейнов, длина балок должна соответствовать проемам. Иными совами, вы должны сделать расчет промежутка между стенами, получив в результате величину несущей способности.

Примечание.

Формируя скат кровли, балки необходимо вынести за пределы стен на 30 – 50 см.

Длина обрезной доски должна составлять не более 6 м. Иначе, это к уменьшению несущей способности, и увеличению прогиба. Современное строительство отличается тем, что пролеты в домах составляют порой отметки 10 – 12 м. такие размеры, предусматривают применение клееного бруса (прямоугольной формы или двутаврового). Для увеличения показателей стойкости, применяют установку опор. К примеру, зачастую ставят колоны или добавочные стены. Также, для удлинения пролета, часто применяют технологию монтажа ферм.

Для строительства малоэтажных зданий

Используются однопролётные перекрытия: доски, бревна, брусья. Их длина может быть самой разнообразной, но в любом случае зависеть от габаритов здания.

Деревянные брусья берут на себя роль несущей конструкции. Их сечение должно составлять 14 -25 см, толщина 5,5 см – 15 см. Такие размеры – самые часто применяемые в строительстве домов. На практике, довольно часто применяется перекрестная схема установки перекрытий. Это дает возможность максимально укрепить конструкцию, не затрачивая дополнительные материалы и время в работе.

Оптимальная длина пролёта в процессе расчета деревянных балок перекрытия, составляет 2,5 – 4 м. Лучшее сечение для балок перекрытия – в соотношении высоты-ширины 1,5:1.

В строительстве существуют определенные формулы расчетов деревянных балок и необходимых параметров, которые выработались за годы непрерывной практики.

Формулы расчета деревянных балок на изгиб

M / W < = Rд

  • Схема расчета балок перекрытияМ – момент прогиба, измеряемый в кгс х м.
  • W – уровень сопротивления, измеряемый в см3.
  • M = ( ql2 ) / 8
  • Две переменные в данной формуле, помогают рассчитать нагрузку на деревянную балку.
  • – нагрузка, которую может выдерживать балка.
  • l – длина балки перекрытия.

Примечание.

Результат, полученный от методологии расчета деревянных балок и степени прогиба, находится в непосредственной зависимости от используемого материала и метода обработки.

Итог

Важность расчета деревянных балок настолько велика, что от него зависит прочность всей дальнейшей конструкции здания. Не важно, насколько прочный брус вы используете для строительства, в процессе эксплуатации, он все равно потеряет свои первоначальные свойства. Под давлением и оказанной нагрузкой всей конструкции, балки начнут прогибаться, и чем больше времени пройдет, тем хуже.

Превышение показателей в 1/250 от всей длины доски перекрытия, увеличивает возможность создания ситуации аварийного обрушения. Именно поэтому, специалисты советуют не относиться халатно к расчетам деревянных балок перекрытий в жилом доме, и в случае если вы не сможете сделать при помощи калькулятора расчета деревянных балок самостоятельно, обратитесь к профессионалам.

 

к

Виды строительных балок из дерева- плюсы и минусы- Обзор +Видео

4 фото деревянных балокПри разработке проекта по строительству объекта, производятся расчёты нагрузок для применяемых материалов. На основании собранных данных автор даёт разрешение на применение деталей или производит замену на более подходящий вариант. Расчёты должны быть точными с обязательным запасом прочности.

Особо тщательно производятся расчёты прочности для материалов, которые в период эксплуатации теряют свои технические свойства, а процесс этот может ускориться при влиянии на них внешних сил. К таким материалам относятся детали из пиломатериалов.

Расчёт деревянной балки занимает основное место в строительном процессе

Виды строительных балок из дерева

Разделение на виды основано на определении сечения детали:

  1. Цельные пиленые деревянные детали;
  • Круглое бревно, представляют собой участки ствола дерева очищенные от сучьев и коры. Длина от 3 метров до 6 метров. Диаметр допускается от 140 мм и более. Подходят для монтажа несущих конструкций в виде стропил и ферм.
  • Брус с квадратным сечением. Применяются для перекрытий, монтажа ростверка фундамента и устройства мауэрлата кровли. По длине используется не более 6 метров, при этом учитывается опорная часть в 200 мм.

Доски с прямоугольным сечением. По прочности опережает квадратный брус.

  1. Сборные клееные пиломатериалы;
  • Материал для деревянных балокКлееный брус с квадратным сечением. Отличается повышенной прочностью. Изготавливается в фабричных условиях. Выдерживает нагрузки при длине до 12 метров. Производится из высушенного материала посредством склеивания нескольких досок между собой под прессом. При изготовлении удаляются сучки из древесины и ликвидируются другие изъяны, которые ослабляют обычную деталь. При этом сохраняются все основные технические характеристики древесины.
  • Двутавровые деревянные балки. Редко используемый материал по причине дорогой стоимости. Изготавливается из двух прямоугольных брусков склеенных между собой перпендикулярно деревянной перемычкой. Проявляет самые высокие показатели по прочности.

Материал, используемый для изготовления деревянных балок

Основным материалом для бруса применяется древесина хвойных пород;

  • Монтаж деревянных балокдревесина сосны,
  • пихта редко используется как пиломатериал.
  • материал из ели,
  • лиственница,
  • тисовая древесина не уступает по прочности сосне.

При хороших местных условиях по наличию чернолесья, для материала изготовления балок перекрытия применяется породы широколиственных деревьев;

  • древесина дуба,
  • клён,
  • берёза,
  • бук лесной,

Положительные характеристики древесного материала

Лёгкий вес деталей, не требуется привлечения специальной техники. Уменьшается нагрузка общей конструкции здания.

  • По прочности не уступает материалу из металла и бетона.
  • Не нарушает экологическую обстановку.
  • Долгий срок службы.
  • Красиво выглядит.
  • Недорогой материал.
  • Быстро монтируется.

Отрицательные качества деревянного бруса

  • Высокая горючесть, перед применением требуется обработка специальными составами препятствующими возгорание.
  • Непозволительно попадание влаги. В противном положении возможна деформация, возникновение очагов плесени и гниения, приводящие к разрушению.

Со временем изменяются размеры в связи с усыханием материала. Невозможно применение материала изготовленного из свежеспилённого дерева. Неправильная сушка приводит брус к растрескиванию и скручиванию с полной деформацией.

Места применения балок из древесины

  • Перекрытия подвальных помещений и цокольных этажей. В последующем снизу производится подшивка доской и укладка утепляющего материала. Сверху по балке устраиваются полы.
  • Потолочное перекрытие отделяет пространство комнат от чердачного пространства.
  • Из деревянных балок монтируется остов кровли, как основных деталей. Мауэрлат с опорой на него стропильного бруса и дополнительными опорными деталями.

Как рассчитываются основные характеристики деревянной балки

К основным техническим характеристикам пиломатериалов для изготовления балок относятся:

  • Размер сечений деревянных балокРазмер сечения. Данная характеристика равна 5% от необходимой длины балки.
  • Длина балки, измеряется расстоянием равным промежутком между стенами. Не учитывается отрезок бруса заложенный в стену для опоры.
  • Оптимальное расстояние между балками, равно 600 мм или 1200мм. подбирается под размер подшивного материала и плит утеплителя. Такое расстояние обеспечивает наибольшую жёсткость конструкции.
  • Действующая нагрузка на деталь. Данная величина для балки подразделяется на постоянную нагрузку, состоящие из веса детали, подшивного материала, материала для пола и утеплителя. Переменные величины представляют собой вес людей, мебели, оборудования. Основные данные вычисляются по справочным формулам, в которых используются табличные значения согласно СНиП. В них входят данные весовые нагрузки на 1м2, умноженные на коэффициент запаса прочности равный всегда 1,3.

Затем складываются примерный вес 1м2и общий вес постоянной величины соответствующий справочной величины, результатом будет общая нагрузка, действующая на балку и возможны прогиб детали.

Заключение

Самым точным вариантом для расчёта величины прочности необходимой балки для монтажа перекрытия будет обращение к справочным таблицам в СНиП. Они рассчитаны высококвалифицированными специалистами с необходимым запасом прочности. Тем самым снижается риск возникновения ошибки в самостоятельных расчётах.

виды, метод расчёта на прогиб

Важный этап строительства любого здания – установка межэтажных перекрытий. Они распределяют вес находящихся выше элементов строения, таких как крыша и стены, а также коммуникаций и деталей интерьера верхних этажей. Чтобы выдержать немалую нагрузку, нужны прочные перекрытия. В статье расскажем, какие виды балок применяют для разных частей здания, и рассмотрим, как правильно рассчитывать нагрузку и длину балочных перекрытий.

перекрытие из дерева

Межэтажное перекрытие деревянными балками

Виды перекрытий

Содержание статьи

Перекрытие – это горизонтальная несущая конструкция из балок, разделяющая здание по высоте на функциональные зоны или этажи и поддерживающая прочность всего строения. При строительстве дома применяют следующие виды перекрытий:

  • цокольное или подвальное перекрытие;
  • межэтажное перекрытие;
  • чердачное перекрытие.
чердачное перекрытие

Чердачное перекрытие

Естественно, самые прочные – металлические балки в виде швеллера, уголка или двутавра, изготовленные из высокопрочной стали. Их лучше всего использовать для цокольного перекрытия, так как оно несёт наибольшую нагрузку. Из стальных балок можно устраивать длинные пролёты с большим расстоянием между балками. Они устойчивы к механическим повреждениям и гниению. Однако из-за большого веса с ними тяжело работать, а высокая цена металла увеличивает расходы на строительство.

Железобетонные балки перекрытия выдерживают большие нагрузки и подходят для строительства многоэтажных домов. Но для их монтажа понадобится специальная техника.

В основном при строительстве частных домов для перекрытий используют деревянные балки. Дерево – надёжный и экологически безопасный материал, который не навредит жильцам дома. Балки из дерева относительно недорого стоят и имеют небольшой, по сравнению с предыдущими видами вес, поэтому их легко устанавливать. Однако дерево огнеопасно, подвержено гниению и поражению короедом, поэтому требует предварительной обработки.

Типы деревянных балок

Деревянные балочные перекрытия различаются размерами, сечением, способом производства и породой дерева, из которого они сделаны. От выбора деревянных балок зависит надёжность и прочность строения. В зависимости от расстояния между стенами и предполагаемой нагрузки для перекрытий, используют доску или брус из цельного массива дерева, или клеёные изделия.

типы деревянных балок

Разновидности деревянных балок

Цельные балки

Балки сделанные из цельного массива дерева, менее прочные, чем клеёные или двутавровые. Поэтому их длина не должна превышать 6 метров. Часто для увеличения прочности, строители на объекте спаривают доски. Стягивают их болтами и гайками с резиновыми или пластиковыми прокладками, предотвращающими попадание влаги и образованию ржавчины на крепеже.

Клеёный брус

Клеёный брус изготавливают методом склеивания нескольких частей между собой. Балки из этого материала способны выдерживать высокие нагрузки, поэтому их можно использовать в конструкции перекрытий длиной до 14 метров. Из такого бруса можно изготовить гнутые перекрытия для арок.

Имеются у таких изделий и недостатки. При изготовлении могут использовать некачественные пиломатериалы, поэтому со временем возможна усадка балочного перекрытия. К тому же клеёные балки значительно дороже цельных. Чтобы рациональнее использовать средства отведённые на строительство, нужно правильно рассчитать нагрузку и длину балок.

клееный брус

Клееный брус при аналогичном сечении с обычным имеет большую прочность

Балки перекрытия изготавливают из хвойных пород дерева, но также часто используют древесину дуба, акации, клёна и других деревьев. Главное условие необходимое для прочности конструкции – влажность не более 12–14%. Виды некоторых изделий приведены в таблице ниже.

Двутавровые балки

Достоинства двутавровых деревянных балок – универсальность применения, простота установки и высокая прочность. Они сохраняют свои параметры при больших нагрузках без вспомогательных конструкций для усиления.

двутавровая балка

Устройство двутавровой балки

Двутавр делают с использованием хорошо просушенного строганного или клеёного бруса, прочной проклеенной водостойкой фанеры или OSB-плит, на основе огнеупорного и влагостойкого клея. Поэтому двутавровая деревянная балка не требует пропитки специальными составами и легко поддаётся распиловке. Однако из-за сложной технологии изготовления их редко применяют для устройства перекрытий.

Двутавровые балки из OSB (ОСП)

Двутавровые балки из OSB (ОСП)

соединение двутавровых балок

Соединение двутавровых балок между собой

Для всех видов выпускаемой продукции есть свой сортамент. Сортамент — это подбор различных изделий готовой продукции по маркам, профилям или размерам. Часто в таблице указаны дополнительные сведения о прочности, весе и т. д.

Сечение балочных перекрытий

На прочность перекрытия также влияет сечение балки. По типу сечения включают следующие виды пиломатериалов:

  • прямоугольные;
  • квадратные;
  • круглые;
  • овальные;
  • двутавровые.

Самые распространённые – балочные перекрытия прямоугольного сечения. Их легко устанавливать и такие балки будут служить лагами для обустройства полов. При монтаже прямоугольных балок их устанавливают вертикально широкой частью, так как с увеличением высоты повышается прочность конструкции.

Для чердачных перекрытий часто используют круглые балки или оцилиндрованные брёвна. Такие балки имеют хорошую прочность и устойчивость на прогиб.

Наиболее крепкие и функциональные – двутавровые балки перекрытия.

Расчёт нагрузки и размеров деревянных балок

Перед возведением здания необходимо рассчитать нагрузку и длину балочных перекрытий. Для лучшей прочности перекрытия при строительстве нужно использовать деревянные балки с немного большим, чем расчётный, запасом прочности.

выбор балок по толщине и ширине

Выбор ширины или толщины балки в зависимости от длины

Чтобы правильно произвести расчёт нагрузки на балку перекрытия, нужно:

  1. Знать расстояние между стенами и шаг между балками.
  2. Вычислить постоянную нагрузку, складывающуюся из массы балок, утеплителя и материалов, из которых изготовлен пол и потолок. устройство перекрытия

    Для вычисления необходимо сложить удельный вес на кв. метр всех стройматериалов

  3. Временную нагрузку. К ней относятся масса мебели и находящихся в здании людей. Как правило, её считают равной 150 кг/м2.
  4. Высчитать предполагаемую нагрузку на 1 м2 перекрытия (сумма временных и постоянных показателей).

Так как для расчёта требуется знать нагрузку на погонный метр, нужно предполагаемую нагрузку на 1 м2 умножить на расстояние между балками. Далее, полученную цифру умножают на квадрат расстояния между несущими стенами и делят на 8. Так проводят расчёт нагрузки балочного перекрытия.

Mmax = (q*L2)/8

Где:

  • q — полная нагрузка на кв. м;
  • L2 — квадрат расстояния между стенами.

При проектировании каркаса перекрытия нужно уделить внимание пространственной жёсткости, которая во многом зависит от показателей прогиба балочного перекрытия.

Расчёт деревянной балки на прогиб проводят по формуле: W = Mmax / R, где M – максимальная нагрузка, а R – сопротивление древесины из СП 64.13330.2017 от 2017 г. (актуальная редакция СНиП II-25-80). Для древесины 2 сорта её принято считать равной 130 кг/см2.

сопротивление деревянных пиломатериалов

Из формулы W = b*h2/6, зная показатель W, вычисляем сечение перекрытия. Достаточно задать одну геометрическую характеристику b (ширину сечения) или h (его высоту).

Прогиб деревянного перекрытия при вычисленной нагрузке не должен быть больше соотношения к длине балки 1:350 для подвальных и межэтажных перекрытий, а для чердачных и мансардных – 1:250.

Размер балок зависит от расстояния между несущими стенами. Для определения необходимой длины балки к этой величине прибавляют 40 см, примерно по 15–20 см с каждой стороны. Профессиональные строители рекомендуют для устройства перекрытия использовать балки с сечением равным 4–5% длины пролёта.

Монтаж перекрытия

Чтобы здание долго прослужило, балочные перекрытия должны соответствовать высокому уровню прочности. Иметь хорошую звуковую и теплоизоляцию, а также хорошо вентилироваться.

При установке деревянных балок чаще всего используют маячный способ монтажа. Вначале монтируют крайние балки, а затем промежуточные. Чтобы не допускать ошибок во время работы, используют уровень. В случае перепадов высоты, балки можно выровнять подложив под торцевые концы пропитанные битумным праймером обрезки.

Перед началом установки проводят сращивание или обрезку балок до нужных размеров. Сращивание балок из бруса по длине обычно проводят способом «замочный паз». Для этого концы брусьев спиливают на 1\2 толщины и заглубляют один торец в толщу другого. Затем места соединений фиксируют.

соединение балки

Сращивание двух балок

Расстояние между деревянными балками не должно быть меньше 60 см и превышать 1 метр. В конструкции из брёвен или клеёного бруса шаг делают больше, чем в дощатых перекрытиях. При монтаже чердачного перекрытия расстояние между дымоходом и балками должно быть не менее 40 сантиметров.

Для прочности каркаса торцы балок заглубляют в несущую стену минимум на 15 см. У двутавровых балок это значение разрешено уменьшить до 7 см. Заделывают углубления раствором или монтажной пеной. Возможно закрепление концов на стенах с помощью стальных связей. В местах опор на балках делается гидроизоляция.

гидроизоляция балок

Гидроизоляция балок в местах опор обязательна

Достоинства и недостатки балок из дерева

Использование в строительстве зданий деревянных балок в отличие от других видов характеризуется следующими достоинствами:

  • доступная цена;
  • простота доставки на строительную площадку;
  • возможность установки без применения спецтехники;
  • экологическая безопасность;
  • ремонтопригодность.

Однако, несмотря на многие достоинства, такие перекрытия менее прочны, чем металлические и железобетонные. Требуют обработки антипиренами, а также средствами против гнили и плесени. Монтаж деревянных балок возможен только после тщательных расчётов.

В заключение статьи нужно добавить, что применение дерева в строительстве значительно сокращает расходы. Чтобы не нарушить конструкцию всего здания и установить прочные перекрытия, их проектирование и монтаж лучше доверить профессиональным строителям.

Расчет деревянной балки перекрытия на прогиб, пример, таблица

Применяется и такое конструктивное решение, когда несущие элементы перекрытия являются частью стропильных конструкций. В этом случае балка является конструкцией для формирования свеса, то она  опирается на мауэрлат  и имеет выпуск за внешнюю грань каждой стены примерно на 500 мм. Это конструктивное решение может увеличить её длину примерно на 1 метр.

Производя подбор и расчет деревянных балок необходимо помнить, что самым оптимальным расстоянием, которое можно перекрывать, применяя эти конструктивные элементы, является 6 метровый пролет.

При необходимости перекрывать большие расстояния рекомендуется  использование деревянных конструкций прямоугольного или двутаврового сечения изготовленных из клееного бруса или применять промежуточные конструкции, такие как стойки, колонны, декоративные арки и т.п.

Сбор нагрузок воздействующих на балки

Диапазон различного вида нагрузок действующих на несущие конструкции достаточно велик. Он различается исходя из целевого применения балки, то есть ответа на вопрос эта балка располагается в междуэтажном или чердачном перекрытии. Конструкции междуэтажных перекрытий несут нагрузку в основном только от веса самого перекрытия, от  процесса жизнедеятельности людей которые там находятся и того производственного процесса который там проходит.

Так расчетная нагрузка на междуэтажное перекрытие  в жилых зданиях равна 150кг/м2  х 1,3 = 195 кг/м2.

Коэффициент 1,3 обеспечивает надежность работы конструкции. Вес междуэтажного перекрытия включает вес балок, полов, конструкций потолка, утеплителя. При производстве расчетов вес междуэтажного перекрытия лучше всего рассчитывать в каждом случае индивидуально.

Нагрузка на чердачное перекрытие, эксплуатация которого не предусматривает 70 кг/м2 х 1,3 = 91 кг/м².

Вес самого чердачного перекрытия включает в себя вес балок, утеплителя, материала зашивки и составляет 50 кг/м2.  В случае, если балка является не только чердачным перекрытием, но и входит в конструкцию стропильной системы здания, то её расчет производится в составе стропильных конструкций.

В случае, когда величина прогиба превышает указанные величины, это может нанести существенные деформационные изменения в геометрии потолочных конструкций.  Так при длине балки перекрытия 6 метров величина допустимого прогиба будет составлять 17 мм. Если предположить, что потолок в помещении будет из гипсокартонных плит, то образование трещин неминуемо. Поэтому производя расчет, следует сразу же учитывать материал,  из которого будет выполняться конструкция потолка. Если заказчик для оформления потолка будет использовать подвесные конструкции типа «Армстронг», то беспокоиться не о чем, а если для отделки будут применяться материалы на основе гипса, минеральных вяжущих, то возможно стоит увеличить надежность перекрытия и увеличить сечение балок, чтобы полностью исключить возможность прогиба.

Расчет сечения деревянной балки перекрытия

Расчет деревянных несущих однопролетных
опорных балок

     Расчет деревянных однопролетных опорных балок перекрытия выполняется на прочность, от воздействия расчетных нагрузок и деформацию (прогиб) от воздействия нормативных нагрузок.

     С целью упрощения расчетов, можно скачать файла в формате XLSX, см. ниже, для расчета деревянных несущих однопролетных опорных балок (из досок и брусьев).


     Для расчета необходимо определиться с шагом балок (расстояние между осями балок) и уйти от так называемого явления «зыбкости» перекрытия. Шаг балок в разных источниках колеблется от 600 до 1040 мм (Линович Л.Е. Расчет и конструирование частей гражданских зданий, 1972 г.; Осипов Л.Г., Сербинович П.П., Красенский В.Е. Гражданские и промышленные здания, часть 1, 1957 г.), но рекомендуемым является шаг — не более 750 мм.

I. Расчет деревянной балки на прочность


     Есть на пример междуэтажное деревянное перекрытие жилого дома. Расстояние между несущими стенами (пролет балки) — 5,0 м, расстояние между осями балок — 0,7 м.
     Чертеж 1

     Расчет:

     1. Определить зону с которой будут собираться нагрузки на балку перекрытия. Она составляет половину расстояния между осями балок с одной и другой стороны от оси рассчитываемой балки. В нашем случае зона сбора нагрузки на балку составит:

     0,35 + 0,35 = 0,7 м (см. Чертеж 1)

     2. Определить нагрузку от перекрытия передающуюся на балку. Она состоит из собственного веса перекрытия и временной нагрузки на него.

     Чертеж 2



     Нужно найти вес 1 м2 каждого слоя (см. Чертеж 2):

     — половая доска, толщ. — 0,05 м;
     — звукоизоляция, толщ. — 0,1 м;
     — вагонка доска, толщ. — 0,02 м.

     Вес 1 м3 древесины для пород: сосна, ель, кедр, пихта (берем с запасом для класса условий эксплуатации 3 (влажный) из таблицы Г.1, свода правил «Деревянные конструкции») — 600 кг.
     Вес 1 м3 звукоизоляции (в зависимости от плотности утеплителя, берем на пример URSA GEO M-15 с плотностью от 14 до 15 кг/м3) — 15 кг.

     (600 х 0,05) + (15 х 0,1) + (600 х 0,02) = 43,5 кг/ м2

     3. Определить вес 1 погонного метра балки. Для этого берем предполагаемое сечение несущей балки, на пример 0,12 х 0,2 (h) м, в таком случае вес 1 погонного метра балки составит:

     600 х 0,12 х 0,2 = 14,4 кг/м.п.

     4. Найти нормативную и расчетную нагрузки от 1 м2 перекрытия без учета балок перекрытия.

     Нормативная нагрузка

     Из свода правил «Нагрузки и воздействия»:

     — временная нормативная нагрузка на междуэтажное перекрытие в жилых зданиях составляет — 1,5 кПа или 150 кг/м2;
     — нормативная нагрузка от веса перегородок составляет — 0,75 кПа или 75 кг/м2 ;
     — нормативные значения нагрузок на ригели и плиты перекрытий от веса временных перегородок следует принимать в зависимости от их конструкции, расположения и характера опирания на перекрытия и стены. Указанные нагрузки допускается учитывать как равномерно распределенные добавочные нагрузки, принимая их нормативные значения на основании расчета для предполагаемых схем размещения перегородок, но не менее 0,5 кПа или — 50 кг/м2). Лучше учесть вес предполагаемых к установке перегородок — 75 кг/м2.

     Нормативная нагрузка от 1 м2 перекрытия без учета балок перекрытия составит:

     43,5 + 150 + 75 = 268,5 кг/м2


     Расчетная нагрузка

     Из свода правил «Нагрузки и воздействия»:

     — коэффициент надежности по нагрузке для веса строительных конструкций для: бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные — 1,1 (применяем для перекрытия);
     — временная нормативная нагрузка на междуэтажное перекрытие в жилых зданиях составляет — 1,5 кПа или 150 кг/м2;
     — нормативные значения нагрузок на ригели и плиты перекрытий (в нашем случае деревянное перекрытие) от веса временных перегородок следует принимать в зависимости от их конструкции, расположения и характера опирания на перекрытия и стены. Указанные нагрузки допускается учитывать как равномерно распределенные добавочные нагрузки, принимая их нормативные значения на основании расчета для предполагаемых схем размещения перегородок, но не менее 0,5 кПа. 1,3 — при полном нормативном значении менее 2,0 кПа; если нагрузка на перекрытие 2,0 кПа и более, то 1,2 — при полном нормативном значении нагрузки;
     — нормативные значения нагрузок на ригели и плиты перекрытий от веса временных перегородок следует принимать в зависимости от их конструкции, расположения и характера опирания на перекрытия и стены. Указанные нагрузки допускается учитывать как равномерно распределенные добавочные нагрузки, принимая их нормативные значения на основании расчета для предполагаемых схем размещения перегородок, но не менее 0,5 кПа или — 50 кг/м2). Также лучше учесть вес предполагаемых к установке перегородок — 75 кг/м2;
     — нормативные значения нагрузок на ригели и плиты перекрытий от веса временных перегородок следует принимать в зависимости от их конструкции, расположения и характера опирания на перекрытия и стены. Указанные нагрузки допускается учитывать как равномерно распределенные добавочные нагрузки, принимая их нормативные значения на основании расчета для предполагаемых схем размещения перегородок, но не менее 0,5 кПа. 1,3 — при полном нормативном значении менее 2,0 кПа; если нагрузка на перекрытие 2,0 кПа и более, то 1,2 — при полном нормативном значении нагрузки.

     Расчетная нагрузка от 1 м2 перекрытия без учета балок перекрытия составит:

     (43,5 х 1,1) + (150 х 1,3) + (75 х 1,3) = 340,35 кг/м2

     5. Найти нормативную и расчетную нагрузки от 1 м2 перекрытия с учетом балок перекрытия при ширине сбора нагрузки = 0,7 м.

     Нормативная нагрузка

     268,5 х 0,7 + 14,4 = 202,35 кг/п.м.


     Расчетная нагрузка

     Из свода правил «Нагрузки и воздействия»:

     — коэффициент надежности по нагрузке для веса строительных конструкций для: бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные — 1,1 (применяем для балки перекрытия);

     (340,35 х 0,7) + (14,4 х 1,1) = 254,09 кг/п.м.

     6. Определить изгибающий момент балки:


     где,

     M — изгибающий момент балки, в кгм;
     q — расчетная нагрузка на 1 п.м. балки;
     l — пролет балки.

     (254,09 х 25) / 8 = 794,0 кгм

     7. Определить сечение балки (расчет на прочность по расчетным нагрузкам)

     Из свода правил «Деревянные конструкции»:

     — расчетное сопротивление древесины на изгиб — 130 кгс/м2

     Найти момент сопротивления деревянной балки в см3, для этого переводим 794,0 кгм (изгибающий момент балки) в кгсм.

     794,0 х 100 = 79400 кгсм

     Далее находим сам момент сопротивления — W

     79400 / 130 = 610,8 см3

     Далее по таблицам 1 (Моменты сопротивления (W) и инерции (J) досок и брусьев) или 2 (Моменты сопротивления (W) и инерции (J) бревен) исходя из полученного расчетом момента сопротивления 610,8 см3 подобрать сечение балки исходя из принятой до начала расчета высоты балки — 20 см.


     Из таблицы 1 для досок и брусьев подходит балка 10 х 20 с моментом сопротивления 667, но лучше взять с запасом следующего с сечения 12 х 20, как и предполагалось. Из таблицы 2 для бревен подходит балка диаметром 20 см с моментом сопротивления 785.

     Таблица 1. Моменты сопротивления (W) и инерции (J) досок и брусьев

     Таблица 2. Моменты сопротивления (W) и инерции (J) бревен


     Применять подобранные балки после расчета на прочность нельзя, т.к. их необходимо проверить еще и на прогиб.

II. Расчет деревянной балки на прогиб

     Расчет деформации при изгибе выполняется по нормативным нагрузкам.

     1. Перевести полученную ранее нормативную нагрузку на 1 п.м. балки при ширине сбора нагрузки 0,7 м — 202,35 кг/п.м в кгс/см

     202,35 / 100 = 2,024 кгс/см

     и пролет балки — 5 м в см

     5 х 100 = 500 см

     2. Вычислить прогиб балки

     где

     f — прогиб балки, в см;
     q — нормативная нагрузка на 1 п.м. балки;
     l — пролет балки;
     E — модуль упругости древесины вдоль волокон — 100000;
     J — момент инерции балки из таблицы 1 (в нашем случае берем значение 8000 для подобранной балки 12 х 20 (h)).

     (5 / 384) х ((2,024 х 5004) / (100000 х 8000)) = 2,06 см

     3. Найти предельный прогиб для нашей балки пролетом 500 см

     Из старого свода правил «Деревянные конструкции» (не действующий) см. табл. 3:

     — предельный прогиб в долях пролета для балок междуэтажных перекрытий — 1/250.


     Таблица 3. Предельные прогибы в долях пролета

     Сейчас есть эстетическо-психологические требования к прогибам деревянных балок в своде правил «Нагрузки и воздействия», но они менее требовательны, так что лучше пользоваться данной таблицей.

     500 / 250 = 2 см (предельный прогиб для нашей балки)

     4. Сравнить полученный предельный прогиб балки с предельным расчетным прогибом.

     У нас прогиб получился больше 2 см, а именно — 2,06 см, значит увеличиваем сечение балки до 15 х 20.

     Снова находим момент инерции, только в формулу уже подставляем из таблицы момент инерции для балки, сечением 15 х 20 (h) — 10000.
     Также подствляем в формулу нормативную нагрузку, переведенную в кгс/см с учетом веса балки 0,15 х 0,2:

     Вес балки — 600 х 0,15 х 0,2 = 18,0 кг/м.п.

     Нормативная нагрузка — 268,5 х 0,7 + 18,0 = 205,95 кг/п.м.

     Перевод нормативной нагрузки из кг/п.м в кгс/см – 205,95 / 100 = 2,06 кгс/см.

     Подставляем полученные данные в формулу

     (5 / 384) х ((2,06 х 5004) / (100000 х 10000)) = 1,68 см

     Это меньше допустимого прогиба — 2,0, значит берем балку длиной 5 м, сечением 15 х 20.

     Таким образом, после выполненных расчетов деревянной балки на прочность и на прогиб от воздействия нагрузок, применяем в конструкции перекрытия деревянные балки длиной 5 м, сечением 15 х 20 (h), с шагом между осями балок 0,7 м.

     Более сложные расчеты можно заказать в лицензированной организации.

Расчет деревянной балки на прочность в стропильной системе

Sechenie-derevyannyih-balok1Как строительный и отделочный материал древесина используется повсеместно. Но если при ее подборе в качестве облицовочного покрытия важен, в первую очередь, ее внешний вид и геометрия, то для несущих частей конструкции  прежде следует обращать внимание на другие характеристики.

Ни одно здание невозможно покрыть кровельным материалом, не обустроив соответствующую стропильную систему (исключение составляют только дома, для которых в качестве перекрытий используются ж/б плиты). Вот для такого «скелета» и используются заготовки из древесины.

[box type=”info” ]Не отвлекаясь на уточнения, что это – бревна или толстые доски, их параметры, какие в них допускаются дефекты и тому подобные вещи, рассмотрим один вопрос – как рассчитать их прочность. Для упрощения все эти детали стропильной системы будем именовать балками.[/box]

Тот, кто знаком с курсом «Сопротивление материалов», знает все сам, тому, кто о нем только слышал, формулы не помогут. Поэтому рассмотрим этот вопрос в виде практических советов, чтобы понимать, что и где посмотреть.

raschetnye_soprotivleniya_shpona

Нас должно интересовать, не сломается ли балка под нагрузкой? Нужно знать, что какая бы конструкция системы не обустраивалась, есть общее требование – величина максимального прогиба балки должна быть менее 0,004 ее длины. Например, при стандартной в 6000 мм прогиб не должен превышать 24 мм (6000 х 0,004).

Учесть нужно 2 фактора – собственный вес конструкции и максимальную нагрузку, которую она будет испытывать (снежный покров, порывы ветра). Существуют специальные таблицы, а также онлайн-калькуляторы в интернете, по которым, имея исходные данные, все легко просчитать.

Вводятся следующие параметры: сечение балки, ширина пролета и расстояние между стропилами. Максимальную нагрузку для хвойных пород принимают равной 130 кг/м2. Под весом конструкции подразумевается общий вес как деревянных элементов системы (стропила, обрешетка), так и слоев гидро-, паро- и теплоизоляции + кровельного покрытия.

Sechenie-derevyannyih-balok1-e1362159061339

Необходимо увеличить расчетные величины с учетом веса работающего на крыше человека (обслуживание, ремонт кровли), различных устройств (например, мачта антенны, громоотвода и тому подобное).

Нужно принять во внимание и целостность балки, ведь при нехватке ее длины заготовки соединяются между собой. Кстати, такие элементы системы считаются более надежными.

Можно привести некоторые значения для расчета сечения стропил в зависимости от длины:

  • от 3 м и менее – 10 х 8 при шаге 1,2 м;
  • 3-4 м – 9 х 18, 8 х 18 и 8 х 16 при расстоянии между стропилами 1,8; 1,4 и 1 м соответственно;
  • 4-6 м – 8 х 20 (шаг 1 м) и 10 х 20 (шаг 1,4 м). 

Рекомендации

  • Для стропильной системы нельзя применять древесину сортности ниже 2-й.
  • Оптимальным вариантом являются балки с прямоугольным профилем (соотношение – 4:1).
  • Для клееных заготовок методика расчетов и используемые формулы остаются такими же, как и для цельных.
  • Нельзя использовать лиственничные деревья, так как они имеют недостаточную прочность на изгиб.
  • Концы опорных балок должны быть не менее 12 см.

Расчет деревянной балки для прочности, пример


Деревянная балка AB пролетом 5 м, шириной 100 мм и высотой 200 мм должна выдерживать три сосредоточенные нагрузки, показанные на рисунке. Выбранный сорт древесины имеет следующие допустимые материалы; τ все = 1 МПа и σ все = 10 МПа.

Рассчитать максимальное напряжение сдвига и нормальные напряжения для выбранной древесины балка для данных условий нагружения.

Решение:

Шаг 1: Запишите входные параметры (включая свойства материала), которые определено в образце примера.

ОБЗОР ВХОДНЫХ СВОЙСТВ
Параметр Стоимость
Ширина бруса [b] 200 мм
Высота бруса [H] 100 мм
Допустимое напряжение сдвига [τ все ] 1 МПа
Допустимое нормальное напряжение [σ все ] 10 МПа
Тип конструкции балки Балка с простой опорой
с многоточечными нагрузками

Шаг 2. Посетите страницу «Пример расчета просто поддерживаемого прогиба балки», чтобы см. пример расчета на сдвиг сила и изгибающие моменты.Рассчитать сдвиг сил и изгибающих моментов с помощью калькулятора напряжения и прогиба простой опоры балки, как показано в примере. Максимальные усилия сдвига и изгибающие моменты, проходящие через деревянную балку, приведены ниже.


СДВИГАТЕЛЬНЫЕ СИЛЫ И ИЗГИБНЫЕ МОМЕНТЫ
Расстояние x Сдвигающая сила (N) Изгибающий момент (Нм)
0.5 12676,5 6323
1,5 2500 8882

Шаг 3: Посетите страницу «Расчет прямоугольной балки на прочность», чтобы рассчитать максимальный сдвиг и нормальные стрессы.

См. Пример расчета ниже для первой точки, указанной на шаге 2.

ВХОДНЫЕ ПАРАМЕТРЫ
Параметр Стоимость
Высота несущей балки [2c] 200 мм
Ширина несущей балки [b] 100
Высота y [y] 100
Сила сдвига [В] 12676.5
Изгибающий момент [M] 6323 Н * м

ВЫХОДНЫЕ ПАРАМЕТРЫ
Параметр Стоимость
Площадь поперечного сечения [A] 20000 мм ^ 2
Первый момент площади для участка
поперечного сечения над точкой y [Q]
0 мм ^ 3
Второй момент площади [I zz ] 66666668 мм ^ 4
Нормальное напряжение в точке y [σ x ] 9.484 МПа
.

Напряжение и отклонение балки | MechaniCalc

ПРИМЕЧАНИЕ. Эта страница использует JavaScript для форматирования уравнений для правильного отображения. Пожалуйста, включите JavaScript.


Многие конструкции можно представить как прямую балку или как набор прямых балок. По этой причине анализ напряжений и прогибов в балке является важной и полезной темой.

В этом разделе рассматриваются поперечная сила и изгибающий момент в балках, диаграммы сдвига и момента, напряжения в балках и таблица общих формул прогиба балок.

Содержание

Сила сдвига и изгибающий момент

Чтобы найти поперечную силу и изгибающий момент по длине балки, сначала решите внешние реакции при граничных условиях. Например, нижняя консольная балка имеет приложенную силу, показанную красным, а реакции показаны синим цветом при фиксированном граничном условии:

После того, как были решены внешние реакции, сделайте разрезы секций по длине балки и решите реакции на каждом разрезе секции.Пример разреза показан на рисунке ниже:

Когда балка разрезается по сечению, при решении для реакций можно учитывать любую сторону балки. Выбранная сторона не влияет на результат, поэтому выбирайте наиболее легкую. На рисунке выше выбрана сторона балки справа от разреза. Реакции на разрезе показаны синими стрелками.

Знаковая конвенция

Знаки сдвига и момента важны.Знак определяется после того, как сделан разрез и решены реакции для части балки на одной стороне разреза. Сила сдвига в разрезе секции считается положительной, если она вызывает вращение выбранной секции балки по часовой стрелке, и отрицательной, если она вызывает вращение против часовой стрелки. Изгибающий момент в разрезе секции считается положительным, если он сжимает верхнюю часть балки и удлиняет нижнюю часть балки (т.е. если он заставляет балку «улыбаться»).

Исходя из этого соглашения о знаках, поперечная сила в разрезе секции на рисунке выше положительна, поскольку она вызывает вращение выбранной секции по часовой стрелке.Момент отрицательный, так как он сжимает нижнюю часть балки и удлиняет верх (т.е. заставляет балку «хмуриться»).


Ознакомьтесь с нашим калькулятором балок, основанным на методике, описанной здесь.

  • Расчет напряжений и прогибов в прямых балках
  • Строит диаграммы сдвига и момента
  • Может указывать любую конфигурацию ограничений, сосредоточенных сил и распределенных сил

Диаграммы сдвига и момента

Сдвиговый и изгибающий моменты балки обычно выражаются диаграммами.Диаграмма сдвига показывает сдвиг по длине балки, а диаграмма моментов показывает изгибающий момент по длине балки. Эти диаграммы обычно показаны сложенными друг на друга, и комбинация этих двух диаграмм представляет собой диаграмму момента сдвига. Диаграммы момента сдвига для некоторых общих конечных условий и конфигураций нагружения показаны в таблицах прогиба балок в конце этой страницы. Пример диаграммы момента сдвига показан на следующем рисунке:

Общие правила построения диаграмм момента сдвига приведены в таблице ниже:

Диаграмма сдвига Схема моментов
  • Точечные нагрузки вызывают вертикальный скачок на диаграмме сдвига.Направление прыжка совпадает со знаком точечной нагрузки.
  • Равномерно распределенные нагрузки приводят к прямой наклонной линии на диаграмме сдвига. Наклон линии равен величине распределенной нагрузки.
  • Диаграмма сдвига горизонтальна для расстояний вдоль балки без приложенной нагрузки.
  • Сдвиг в любой точке балки равен наклону момента в этой же точке:
  • Диаграмма моментов представляет собой прямую наклонную линию для расстояний вдоль балки без приложенной нагрузки.Наклон линии равен величине сдвига.
  • Равномерно распределенные нагрузки приводят к параболической кривой на диаграмме моментов.
  • Максимальные / минимальные значения момента возникают там, где линия сдвига пересекает ноль.
  • Момент в любой точке балки равен площади под диаграммой сдвига до этой точки:

    M = ∫ V dx

Напряжения изгиба в балках

Изгибающий момент M по длине балки можно определить по диаграмме моментов.Изгибающий момент в любом месте балки затем можно использовать для расчета изгибающего напряжения по поперечному сечению балки в этом месте. Изгибающий момент меняется по высоте поперечного сечения в соответствии с формулой изгиба ниже:

где M — изгибающий момент в интересующем месте по длине балки, I c — центроидный момент инерции поперечного сечения балки, а y — расстояние от нейтральной оси балки до интересующей точки по высоте. поперечного сечения.Отрицательный знак указывает, что положительный момент приведет к сжимающему напряжению выше нейтральной оси.

Напряжение изгиба равно нулю на нейтральной оси балки, которая совпадает с центром тяжести поперечного сечения балки. Напряжение изгиба линейно возрастает от нейтральной оси до максимальных значений на крайних волокнах вверху и внизу балки.

Максимальное напряжение изгиба определяется как:

где c — центроидное расстояние поперечного сечения (расстояние от центроида до крайнего волокна).

Если балка асимметрична относительно нейтральной оси, так что расстояния от нейтральной оси до верха и низа балки не равны, максимальное напряжение будет возникать в самом дальнем от нейтральной оси месте. На рисунке ниже растягивающее напряжение в верхней части балки больше, чем сжимающее напряжение в нижней части.

Модуль упругости поперечного сечения объединяет центроидный момент инерции I c и межцентровое расстояние c:

Преимущество модуля сечения заключается в том, что он характеризует сопротивление сечения изгибу одним членом.Модуль упругости сечения можно подставить в формулу изгиба для расчета максимального напряжения изгиба в поперечном сечении:


Ознакомьтесь с нашим калькулятором балок, основанным на методике, описанной здесь.

  • Расчет напряжений и прогибов в прямых балках
  • Строит диаграммы сдвига и момента
  • Может указывать любую конфигурацию ограничений, сосредоточенных сил и распределенных сил

Напряжения сдвига в балках

Сила сдвига V по длине балки может быть определена из диаграммы сдвига.Сила сдвига в любом месте вдоль балки затем может использоваться для расчета напряжения сдвига по поперечному сечению балки в этом месте. Среднее напряжение сдвига по поперечному сечению определяется как:

Напряжение сдвига меняется по высоте поперечного сечения, как показано на рисунке ниже:

Напряжение сдвига равно нулю на свободных поверхностях (вверху и внизу балки) и максимально в центре тяжести. Уравнение для касательного напряжения в любой точке, расположенной на расстоянии y 1 от центра тяжести поперечного сечения, определяется следующим образом:

.

Калькулятор расчета прочности на прочность прямоугольной балки

Калькулятор расчета прочности прямоугольной балки для расчета нормального напряжения, напряжения сдвига и напряжения фон Мизеса для заданного твердого прямоугольного поперечного сечения. Калькулятор также рисует графики изменения напряжения в зависимости от расстояния от нейтральной оси.

Поперечная нагрузка на прямоугольную балку может привести к нормальному и поперечному напряжения одновременно на любом поперечном сечении конструкции прямоугольный брус.Нормальное напряжение на данном поперечном сечении изменяется с относительно расстояния y от нейтральной оси, и он наибольший на самом дальнем расстоянии точка от нервной оси. Нормальное напряжение также зависит от изгибающего момента. в сечении и максимальное значение нормальных напряжений в прямоугольных балках возникает там, где изгибающий момент наибольший. Максимальное напряжение сдвига возникает на нейтральная ось прямоугольного сечения балки, где сила сдвига максимальна.

Конструкция прямоугольных балок обычно определяется максимальным изгибающим моментом. В случае коротких структурных балок конструкция может приводиться в движение максимальной силой сдвига.

Примечание. Для получения дополнительной информации о предмет, пожалуйста, обратитесь к главе «Расчет балок и валов на прочность» механики материалов. .

Примечание: V и M — поперечная сила и изгибающий момент в сечении, как показано на фигура.Визит » «Калькуляторы прогиба и напряжения несущей балки». Для расчета поперечной силы и изгибающего момента.

Примечание. Предполагается, что на несущую балку действует вертикальная сила сдвига в вертикальной плоскости симметрии.


.

Испытание кирпича на прочность при сжатии | Водопоглощение

Test of Brick

Самый важный момент в этой статье

Один из старейших строительных материалов в строительной отрасли. Кирпич продолжает оставаться самым популярным и ведущим строительным материалом, поскольку он долговечен, дешев, прост в обращении и работе.

Глиняный кирпич используется для возведения внутренних и наружных стен, перегородок, опор, фундаментов и других несущих конструкций.

Кирпич прямоугольной формы с размером, с которым можно удобно обращаться одной рукой.

Кирпич может быть изготовлен из смеси песка или обожженной глины с песком и извести или из портландцементного бетона (PPC).

Обычно используются глиняные кирпичи, поскольку они экономичны и легко доступны.

Длина, ширина и высота кирпича взаимосвязаны, как показано ниже:

Длина кирпича = 2 х ширина кирпича + толщина раствора

Высота кирпича = ширина кирпича

Размер стандартного кирпича должен быть 19 x 9 x 9 см и 19 x 9 x 4 см. При кладке в кладку кирпич размером 19 x 9 x 9 см с раствором становится 20 x 10 x 10 см.

Однако кирпичи, доступные на большей части страны, по-прежнему имеют размеры 9 ″ x 4-i x 3 ″ и известны как полевые кирпичи.

Вес такого кирпича около 3,0 кг. (6,61 фунта) Выемка, называемая туманом, глубиной 1-2 см, как показано на рисунке ниже, предназначена для кирпичей высотой 9 см.

Fog

Детали тумана

Размер тумана должен быть 10 х 4 х 1 см. (100 X 40 X 10 мм) Целью предоставления лягушки является создание ключа для удерживания раствора и кирпичей, уложенных лягушками сверху.

Frog не поставляется в кирпичах высотой 4 см (40 мм) и экструдированных кирпичах.

Также прочтите: IS Code for Civil Engineer [Q & a]

Свойства хорошего кирпича

При возведении ответственных построек используют хороший кирпич. Они должны обладать следующими качествами

Кирпичи должны быть настольными, хорошо обожженными в печах, медного цвета, без трещин, с острыми и квадратными краями.

Кирпичи должны быть одинаковыми по размеру и форме.

Кирпичи должны издавать чистый звук при ударе друг о друга.

Разбитые кирпичи должны иметь однородную и компактную структуру без пустот.

Кирпич не должен впитывать воду более чем на 15 процентов по весу для кирпичей первого класса и от 15 до 20 процентов по весу для кирпичей второго класса при замачивании в воде в течение 24 часов.

Кирпичи должны быть достаточно твердыми. При царапании ногтем на кирпичной поверхности должен остаться след.

Кирпичи нельзя разбивать на куски при падении на твердую землю высотой один метр.

Кирпичи должны иметь низкую теплопроводность.

Кирпичи, впитанные в воду в течение 24 часов, не должны давать отложений белых солей при сушке в тени — сушке в тени.

Прочность кирпича на сжатие должна быть не менее 55 кг / см2

Также прочтите: Метод корончатой ​​резки

Отбор образцов кирпича

Это партия для отбора проб, которая должна содержать не более 50000 кирпичей.

В случае, если партию необходимо облицевать более 50000 кирпичей той же классификации, размера и изготовленных в относительно аналогичных условиях, она должна быть разделена на партии по 50000 кирпичей или их часть.

Отбор проб из штабеля должен быть разделен на несколько реальных или воображаемых секций, и необходимое количество кирпичей должно быть взято из каждой секции.

Кирпичи в верхних слоях штабеля должны быть удалены, чтобы можно было брать образцы из мест в штабеле.

Размер выборки для визуальных / размерных характеристик

Sl. № Диапазон Мин. Сбор образцов
1 2001-10000 20-40
2 10001-35000 32-60
3 35001-50000 50-80

Таблица № 1.

Размер выборки для физических характеристик

  • Прочность на сжатие, выцветание при водопоглощении. И т. Д.
Sl. № Диапазон Мин. Сбор образцов
1 2001-10000 5-10
2 10001-35000 10-20
3 35001-50000 15-30

Таблица № 2.

Также прочтите: Тест на прочность цемента

Виды испытаний кирпича

Прочность на сжатие кирпича

Испытание на водопоглощение кирпича

Испытание кирпича на высыхание

Размерный тест кирпича

Также прочтите: Динамическая вязкость по сравнению с кинематической (разница и определение)

Испытание кирпича на прочность на сжатие (Прочность на сжатие кирпича)

Соответствующий код

Код 3495 часть 1

Аппарат

Машина для испытаний на сжатие (СТМ)

CTM

Машина для испытания на сжатие. Используют компресс из любого материала согласно выставочной версии.Итак, мы знаем, сколько нагрузки в этом материале.

Масштаб

Rural scale

Шкала, используемая в этом тесте для определения длины, рождения и глубины кирпича.

Деревянная плита

Wooden plate for Test

Этот материал используется для изготовления одного кирпича с обеих сторон. Из-за края кирпичного сейфа в CTM (машина для испытаний на сжатие)

Подготовка перед подготовкой Прочность кирпича на сжатие (прочность кирпича на сжатие)

Удалите видимые грани станины, чтобы получить гладкие и параллельные поверхности путем шлифовки.

Погрузить в воду комнатной температуры на 24 часа (1 день). Удалите слив и образец излишков влаги при комнатной температуре.

Заполнить все пустоты и весь туман в поверхности слоя цементным раствором (чистый крупнозернистый песок, цемент толщиной 3 мм).

Хранить под влажным джутовым мешком в течение 24 часов (1 день) с последующим погружением в пресную воду на 3 дня.

Вытрите и удалите все следы влаги.

Также прочтите: Символ проекции первого и третьего угла (ортогональная проекция)

Процедура Прочность кирпича на сжатие (прочность кирпича на сжатие)

Поместите образец плоскими и гладкими поверхностями в горизонтальном направлении и лицом, заполненным строительным раствором, обращенной вверх между двумя сторонами. 3 толстых листа фанеры толщиной 3 мм каждый, тщательно центрируют между пластинами испытательной машины.

Применить равномерную нагрузку 14 Н / кв.мм. (140 кгс / см2) в минуту до отказа и отмечает максимальную нагрузку при отказе.

Нагрузка при отказе максимальная нагрузка на кирпич, при которой будет происходить дальнейшее увеличение показаний индикатора на испытательной машине

  • Примечание: — Листы фанеры из гипса могут использоваться для обеспечения однородной поверхности для приложения нагрузки.

Расчет прочности кирпича на сжатие (прочность кирпича на сжатие)

Как показано ниже, расчет протокола испытаний

  • Испытание кирпича на сжатие н / кв.мм. (Кгс / кв. См.)
    • = (Максимальная нагрузка на разрыв в кгс (Н) / Средняя площадь облицовки станины в кв. См (кв. Мм)

Также прочтите: Тест на консистенцию цемента

Соответствующий код

  • Цель: Определить водопоглощение образца при погружении в холодную воду на 24 часа.
  • Объем: Эта процедура охватывает всю относительную деятельность на сайте проекта.

Аппарат (кирпич водопоглощающий):

  • Утяжелитель для кирпича.Фактический вес кирпича и после водопоглощения расчет веса кирпича

Сухая печь

Oven

  • Сухая печь для испытаний на абсорбцию кирпича.

Измерительная шкала.

  • Шкала, используемая в этом тесте для определения длины, рождения и глубины кирпича.

Подготовка образца Испытание на абсорбцию кирпича (кирпичное водопоглощение)

  • Размеры должны быть мерой с точностью до 1 мм испытательного образца
  • Сухой образец в печи при температуре 105-1150 ° C до достижения практически постоянной массы.
  • образец до комнатной температуры и получить массу — M1

Процедура Испытание на абсорбцию кирпича (кирпич водопоглощение)

  • Погрузите полностью высушенный образец в чистую воду с температурой 27 +/- 20
  • Снимите образец через 24 часа и вытрите все следы воды влажной тканью.
  • Взвесьте образец в течение 3 минут после извлечения из воды — M2

Также прочтите: Что такое обследование цепей (принцип, процедура, метод, инструмент)

Расчеты и записи Испытание на абсорбцию кирпича (Водопоглощение кирпича)

% водопоглощение

Должно быть записано среднее значение полученных результатов.

Все результаты должны быть записаны в соответствующем формате.

Также прочтите: Что такое насыпь песка (мелкого заполнителя)

Испытание на выцветание кирпича

Соответствующий код

Аппарат для определения высолов на кирпиче

Oven

          • Сухая печь для испытаний на абсорбцию кирпича.

Процедура Испытание кирпича на выцветание

Поместите глубину погружения кирпичей в посуду на глубину 25 мм.

Поместите всю композицию в теплое (например, от 20 до 30 ° C) хорошо вентилируемое помещение, чтобы образцы впитали всю воду в чашке. И лишняя вода испаряется.

Накройте всю чашу с кирпичом подходящим стеклянным цилиндром, чтобы не происходило чрезмерное испарение всей посуды.

После того, как вода впитается и кирпичи станут казаться сухими, налейте такое же количество воды в посуду и дайте ей испариться, как и раньше.

После второго испарения осмотрите кирпичи на предмет высолов и сообщите о результатах.

Заключение Испытание на высыхание кирпича

Нет: —

  • Когда налет высолов незаметен.

Небольшая: —

  • Когда отложение высолов не покрывает более 10 процентов открытой площади кирпича.

Умеренное: —

  • Когда отложение высолов составляет более 10 процентов, но менее 50% открытой площади кирпича.

Тяжелая: —

  • Когда отложения высолов составляют более 50 процентов, но отложения не осыпаются и не отслаиваются от поверхности кирпича.

Серьезные: —

  • Когда отложения тяжелые и порошкообразные или отслаиваются от поверхности кирпича.
    Спецификации ограничивают высолы не более умеренными (10–50%) до класса 12,5 и не более чем незначительными (<10%) для более высоких классов

Также прочтите: Лабораторное испытание агрегатов на Зоне

Проверка размеров кирпича

Соответствующий код

Аппарат:

  • Шкала, используемая в этом тесте для определения длины, рождения и глубины кирпича.

Процедура Проверка размеров кирпича

Из выбранных частей (Таблица № 1) берется 20 штук и раскладывается, как показано на Рисунке № 1

Dimension Test On Bricks

2 c Измерение высоты

Измерение размеров кирпичей, рисунок № 1

Допуски (указанные ниже) на размеры кирпичей устанавливаются путем указания минимальных и максимальных размеров не для отдельных кирпичей, а для партий из 20 кирпичей, выбранных наугад.

  • Для модульного размера
    • длина от 3720 до 3880 мм (3800 ± 80 мм)
    • Ширина от 1760 до 1840 мм (1840 ± 40 мм)
    • Высота от 1760 до I 840 мм (1840 ± 40 мм) (для кирпича высотой 90 мм)
      • от 760 до 840 мм (800 ± 40 мм) (для кирпича высотой 40 мм)
  • Для немодульного типоразмера
    • Длина от 4520 до 4680 мм (4600 ± 80 мм)
    • Ширина от 2240 до 2160 дюймов (2200 ± 40 мм)
    • Высота от 1440 до 1360 мм (1400 ± 40 мм)
        • (для кирпича высотой 70 мм)
      • от 640 до 560 мм (600 ± 40 мм)

Двадцать целых кирпичей должны быть выбраны случайным образом из выборки, отобранной под 8.Сыпучие частицы, все пузыри глины и небольшие выступы должны быть удалены.

Они должны располагаться на ровной поверхности последовательно, как показано на рисунке выше. 2C, 2B и 2A в контакте друг с другом по прямой линии. (Согласно рисунку)

Общая длина (прямой кирпич) собранных кирпичей должна быть измерена с помощью ленты или другой подходящей нерастяжимой меры достаточной длины (электронная измерительная лента), чтобы измерить весь ряд на одном участке.

Измерение путем повторного применения короткой линейки или меры не допускается.

Если окажется невозможным измерить кирпичи в одном ряду, образец можно разделить на ряды по десять (10) кирпичей в каждом, которые должны быть измерены отдельно с точностью до миллиметра (миллиметра).

Все эти размеры следует сложить.

Также прочтите: Процедура для бетона Rcc

Тест на кирпичах PPT

Обожженный кирпич обыкновенный Деталь / прочность

Класс
Обозначение

Средняя прочность на сжатие
не менее
н / кв.мм. кгс / кв. См.
35 35 350
30 30 300
25 25 250
20 20 200
17,5 17,5 175
15 15 150
12,5 12,5 125
10 10 100
7.5 7,5 75
5 5 50
3,5 3,5 35
Обычные кирпичи из обожженной глины должны классифицироваться на основе средней прочности на сжатие, как указано в приведенной выше таблице

Также прочтите: Что проходит при съемке | Типы | Метод | Определение

1. Что такое прочность кирпича?

Ответ: На сжатие Прочность из Кирпичей .

(i) Прочность на сжатие Предел прочности кирпича первого класса составляет 105 кг / см 2 .

(ii) На сжатие Прочность кирпича 2-го класса составляет 70 кг / см 2 .

(iii) На сжатие Прочность обычного строительного кирпича составляет 35 кг / см 2 .

2. Какой код IS для испытания кирпича

Ответ: Согласно приведенному ниже коду IS, применяемому в кирпичной кладке

  1. IS: 1077 — 1992 (R2002)
  2. IS: 1200 (Часть III) — 1976
  3. IS: 2212-1991
  4. IS: 3495 (части с I по IV) 1992 ((R2002)
  5. IS: 6042-1969
  6. IS: 3590-1966
  7. IS: 3466-1988

3.Различные типы испытаний кирпича / Код для кирпича /

Ответ: четыре типа испытаний кирпича, как показано ниже

  • Прочность кирпича на сжатие
  • Испытание на водопоглощение кирпича
  • Испытание кирпича на высыхание
  • Размерный тест кирпича

4. Индийский стандартный размер кирпича / Стандартный размер кирпича в Индии в соответствии с Кодексом / размером кирпича.

Ответ: В Индии стандартный размер кирпича составляет 190 мм x 90 мм x 90 мм в соответствии с рекомендациями BIS.При толщине раствора размер кирпича становится 200 мм x 100 мм x 100 мм , который также известен как номинальный размер модульного кирпича.

5. Значение водопоглощения кирпича

Ответ: При испытании, как указано выше, среднее водопоглощение не должно превышать 20% по весу для класса 12,5 и 15% по весу для более высокого класса.

6. Какова прочность кирпича на раздавливание?

Отв:

Минимальные предписанные минимальные значения прочности на раздавливание / сжатие обожженного кирпича при плоском испытании составляют:

(i) Обычный строительный кирпич — 35 кг / кв.см,

(ii) Кирпич второго сорта — 70 кг / кв. см,

(iii) Кирпич первого класса — 105 кг / кв. см.

(iv) Прочность кирпича на раздавливание не менее 140 кг / кв. см оцениваются как класс AA.

Прочность кирпича уменьшается примерно на 25 процентов при замачивании в воде.

Прочность высушенного на солнце (необожженного) кирпича от 15 до 25 кг / кв. см.

7. Какое значение имеет лягушка в кирпиче?

Ответ: Углубление, образовавшееся на лицевой стороне кирпича во время его изготовления, называется лягушкой в ​​кирпиче. Раствор заливается в крестовину во время укладки кирпича при кладке, чтобы способствовать склеиванию и действовать как сдвигающий ключ против горизонтальных нагрузок.

  • Глубина лягушки в кирпиче от 10 до 20 мм
  • Лягушка должна быть направлена ​​вверх.

Важное назначение лягушки в кирпиче:

  • Лягушки также создали дополнительное углубление для раствора, что привело к более прочному соединению кирпичей (образуют шпоночный шов между кирпичом и раствором)
  • Для уменьшения веса кирпичей и удобной укладки кирпичей.

Понравился этот пост? Поделитесь этим с вашими друзьями!

Рекомендуемое чтение —

.

Отправить ответ

avatar
  Подписаться  
Уведомление о