Содержание

Основные формулы для расчета прогиба балки

Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

Балки в доме

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно. Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Виды балок

Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению. Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Деревянные перекрытия

Для расчета максимального прогиба следует учитывать:

  1. Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
  2. Форма поперечного сечения и другие геометрические характеристики.
  3. Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Стальные перекрытия

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

  • электросварка;
  • заклепки;
  • болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео: 

Прочность и жесткость балки

Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.

Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.

Существует два основных метода расчета прочности и жесткости:

  1. Простой. При использовании данного метода применяется увеличительный коэффициент.
  2. Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.

Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.

Расчет балок на прогиб

Расчет на жесткость

Для расчета прочности балки на изгиб применяется формула:

Где:

M – максимальный момент, который возникает в балке;

Wn,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.

Ry является расчетным сопротивлением стали при изгибе. Зависит от вида стали.

γc представляет собой коэффициент условий работы, который является табличной величиной.

Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:

  1. Составление расчетной схемы объекта.
  2. Расчет размеров балки и ее сечения.
  3. Вычисление максимальной нагрузки, которая воздействует на балку.
  4. Определение точки приложения максимальной нагрузки.
  5. Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
  6. Вычисление значения жесткости или максимально прогиба балки.

Чтобы составить расчетную схему, потребуются такие данные:

  • размеры балки, длину консолей и пролет между ними;
  • размер и форму поперечного сечения;
  • особенности нагрузки на конструкцию и точно ее приложения;
  • материал и его свойства.

Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

Где:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

  1. Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
  2. Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
  3. Варианты нагружения консольного стержня, который закреплен жестко.
  4. Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

  • материал изготовления – древесина;
  • плотность составляет 600 кг/м3;
  • длина составляет 4 м;
  • сечение материала составляет 150*200 мм;
  • масса перекрывающих элементов составляет 60 кг/м²;
  • максимальная нагрузка конструкции составляет 249 кг/м;
  • упругость материала составляет 100 000 кгс/ м²;
  • J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

  • вес одного метра балки;
  • вес м2 перекрытия;
  • расстояние, которое оставляется между балками;
  • временная нагрузка;
  • нагрузка от перегородок на перекрытие.

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = ( 60 + 250 + 75 ) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.

 

Расчет прогиба балки на двух опорах

Процесс проектирования современных строений и построек регулируется огромным количеством различных строительных норм и правил. В большинстве случаев нормы требуют обеспечения определенных характеристик, например, деформации или прогиба балок плит перекрытия под статической или динамической нагрузкой. Например, СНиП № 2.09.03-85 определяет для опор и эстакад прогиб балки не более чем в 1/150 длины пролета. Для чердачных перекрытий этот показатель составляет уже 1/200, а для межэтажных балок и того меньше – 1/250. Поэтому одним из обязательных этапов проектирования является выполнение расчета балки на прогиб.

Способы выполнить расчет и проверку на прогиб


Причина, по которой СНиПы устанавливают столь драконовские ограничения, проста и очевидна. Чем меньше деформация, тем больше запас прочности и гибкости конструкции. Для прогиба менее 0,5% несущий элемент, балка или плита все еще сохраняет упругие свойства, что гарантирует нормальное перераспределение усилий и сохранение целостности всей конструкции. С увеличением прогиба каркас здания прогибается, сопротивляется, но стоит, с выходом за пределы допустимой величины происходит разрыв связей, и конструкция лавинообразно теряет жесткость и несущую способность.

Просчитать прогиб конструкции можно несколькими способами:

  • Воспользоваться программным онлайн-калькулятором, в котором «зашиты» стандартные условия, и не более того;
  • Использовать готовые справочные данные для различных типов и видов балок, для различных опор схем нагрузок. Нужно только правильно идентифицировать тип и размер балки и определить искомый прогиб;
  • Посчитать допустимый прогиб руками и своей головой, большинство проектировщиков так и делают, в то время как контролирующие архитектурные и строительные инспекции предпочитают второй способ расчета.

Измерив, насколько просела балка потолочного перекрытия, можно с 99% уверенностью определить, находится ли конструкция в аварийном состоянии или нет.

Методика выполнения расчета на прогиб


Прежде чем приступать к расчету, нужно будет вспомнить некоторые зависимости из теории сопротивления материалов и составить расчетную схему. В зависимости от того, насколько правильно выполнена схема и учтены условия нагружения, будет зависеть точность и правильность расчета.

Используем простейшую модель нагруженной балки, изображенной на схеме. Простейшей аналогией балки может быть деревянная линейка, фото.

В нашем случае балка:

  1. Имеет прямоугольное сечение S=b*h, длина опирающейся части составляет L;
  2. Линейка нагружена силой Q, проходящей через центр тяжести изгибаемой плоскости, в результате чего концы поворачиваются на небольшой угол θ, с прогибом относительно начального горизонтального положения, равным f;
  3. Концы балки опираются шарнирно и свободно на неподвижных опорах, соответственно, не возникает горизонтальной составляющей реакции, и концы линейки могут перемещаться в произвольном направлении.

Для определения деформации тела под нагрузкой используют формулу модуля упругости, который определяется по соотношению Е=R/Δ, где Е – справочная величина, R— усилие, Δ— величина деформации тела.

Вычисляем моменты инерции и сил


Для нашего случая зависимость будет выглядеть так: Δ = Q/(S·Е). Для распределенной вдоль балки нагрузки q формула будет выглядеть так: Δ = q·h/(S·Е).

Далее следует наиболее принципиальный момент. Приведенная схема Юнга показывает прогиб балки или деформацию линейки так, если бы ее раздавливали под мощным прессом. В нашем случае балку изгибают, а значит, на концах линейки, относительно центра тяжести, приложены два изгибающих момента с разным знаком. Эпюра нагружения такой балки приведена ниже.

Чтобы преобразовать зависимость Юнга для изгибающего момента, необходимо обе части равенства умножить на плечо L. Получаем Δ*L = Q·L/(b·h·Е).

Если представить, что одна из опор жестко закреплена, а на второй будет приложен эквивалентный уравновешивающий момент сил Mmax = q*L*2/8, соответственно, величина деформации балки будет выражаться зависимостью Δх = M·х/((h/3)·b·(h/2)·Е). Величину b·h2/6 называют моментом инерции и обозначают W. В итоге получается Δх = M·х/(W·Е) основополагающая формула расчета балки на изгиб W=M/E через момент инерции и изгибающий момент.

Чтобы точно выполнить расчет прогиба, потребуется знать изгибающий момент и момент инерции. Величину первого можно посчитать, но конкретная формула для расчета балки на прогиб будет зависеть от условий контакта с опорами, на которых находится балка, и способа нагружения, соответственно для распределенной или концентрированной нагрузки. Изгибающий момент от распределенной нагрузки считается по формуле Mmax = q*L2/8. Приведенные формулы справедливы только для распределенной нагрузки. Для случая, когда давление на балку сконцентрировано в определенной точке и зачастую не совпадает с осью симметрии, формулу для расчета прогиба приходится выводить с помощью интегрального исчисления.

Момент инерции можно представить, как эквивалент сопротивления балки изгибающей нагрузке. Величину момента инерции для простой прямоугольной балки можно посчитать по несложной формуле W=b*h3/12, где b и h – размеры сечения балки.

Из формулы видно, что одна и та же линейка или доска прямоугольного сечения может иметь совершенно разный момент инерции и величину прогиба, если положить ее на опоры традиционным способом или поставить на ребро. Недаром практически все элементы стропильной системы крыши изготавливаются не из бруса 100х150, а из доски 50х150.

Реальные сечения строительных конструкций могут иметь самые разные профили, от квадрата, круга до сложных двутавровых или швеллерных форм. При этом определение момента инерции и величины прогиба вручную, «на бумажке», для таких случаев становится нетривиальной задачей для непрофессионального строителя.

Формулы для практического использования


На практике чаще всего стоит обратная задача – определить запас прочности перекрытий или стен для конкретного случая по известной величине прогиба. В строительном деле очень сложно дать оценку запасу прочности иными, неразрушающими методами. Нередко по величине прогиба требуется выполнить расчет, оценить запас прочности здания и общее состояние несущих конструкций. Мало того, по выполненным измерениям определяют, является деформация допустимой, согласно расчету, или здание находится в аварийном состоянии.

Совет! В вопросе расчета предельного состояния балки по величине прогиба неоценимую услугу оказывают требования СНиПа. Устанавливая предел прогиба в относительной величине, например, 1/250, строительные нормы существенно облегчают определение аварийного состояния балки или плиты.

Например, если вы намерены покупать готовое здание, простоявшее достаточно долго на проблемном грунте, нелишним будет проверить состояние перекрытия по имеющемуся прогибу. Зная предельно допустимую норму прогиба и длину балки, можно безо всякого расчета оценить, насколько критическим является состояние строения.

Строительная инспекция при оценке прогиба и оценке несущей способности перекрытия идет более сложным путем:

  • Первоначально измеряется геометрия плиты или балки, фиксируется величина прогиба;
  • По измеренным параметрам определяется сортамент балки, далее по справочнику выбирается формула момента инерции;
  • По прогибу и моменту инерции определяют момент силы, после чего, зная материал, можно выполнить расчет реальных напряжений в металлической, бетонной или деревянной балке.

Вопрос – почему так сложно, если прогиб можно получить, используя для расчета формулу для простой балки на шарнирных опорах f=5/24*R*L2/(E*h) под распределенным усилием. Достаточно знать длину пролета L, высоту профиля, расчетное сопротивление R и модуль упругости Е для конкретного материала перекрытия.

Ответ  прост — необходимо непросто рассчитать, но и сохранить на бумаге ход выполнения проверочного расчета, чтобы сделанные выводы о состоянии перекрытия можно было проверить и перепроверить по всем этапам проверки.

Совет! Используйте в своих расчетах существующие ведомственные сборники различных проектных организаций, в которых в сжатом виде сведены все необходимые формулы для определения и расчета предельного нагруженного состояния.

Заключение


Аналогичным образом поступает большинство разработчиков и проектантов серьезных построек. Программа – это хорошо, она помогает очень быстро выполнить расчет прогиба и основных параметров нагружения перекрытия, но важно также предоставить заказчику документальное подтверждение полученных результатов в виде конкретных последовательных расчетов на бумаге.

Что еще почитать по теме?

Автор статьи:

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Понравилась статья? Поделись с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Основы сопромата, расчет прогиба балки

Cодержание:

Основы сопромата кратко.

1. Виды опор.

1.1. Шарнирные опоры.

Расчетная длина (пролет) балки.

1.2. Опорные связи шарнирно закрепленной балки.

1.3 Жесткое защемление на опорах.

1.4. Скользящие заделки.

2. Нагрузки (внешние силы).

3. Напряжения (внутренние силы).

4. Реакции опор.

5. Уравнения статического равновесия.

4.1. Определение опорных реакций.

6. Уравнения изгибающего момента.

7. Балка на двух шарнирных опорах.

8. Консольная балка.

9. Метод сечений.

10. Определение момента сопротивления.

11. Определение угла поворота.

12. Определение прогиба.

13. Определение угла поворота через прогиб.

14. Список использованной литературы.

Расчет прогиба балки не то, чтобы такой уж сложный, но для того, чтобы каждый раз не повторять одни и те же операции при расчете и этим максимально сократить время расчета, специалисты по сопромату уже давно вывели формулы для наиболее вероятных вариантов опор балок и нагрузок, действующих на балки. Достаточно только определиться с расчетной моделью балки и формула для расчета прогиба к Вашим услугам. Но аксиомы: "если хочешь, чтобы работа была сделана хорошо, сделай это сам" пока никто не отменял. Дело в том, что в разного рода справочниках и пособиях иногда бывают опечатки или ошибки, поэтому использовать готовые формулы не всегда есть хорошо.

11. Определение угла поворота.

(вернуться к основному содержанию)

Прогиб строительной конструкции, а в нашем случае балки - единственная величина, которую проще всего определить опытным путем и сложнее всего теоретическим. Когда мы прикладывали к линейке нагрузку (давили на нее пальцем или мощью своего интеллекта), то невооруженным глазом видели, что линейка прогибалась:

Рисунок 11.1. Перемещение центра тяжести поперечного сечения балки в центре балки и угол поворота продольной оси, проходящей через центр тяжести поперечного сечения, на одной из опор.

Если бы мы хотели определить величину прогиба опытным путем, то достаточно было бы измерить расстояние от стола, на котором лежат книги (на рисунке не показан) до верха или низа линейки, затем приложить нагрузку и измерить расстояние от стола до верха или низа линейки. Разница в расстояниях - это и есть искомый прогиб (на фотографии величина прогиба обозначена оранжевой линией):

Фотография 1.

Но попробуем прийти к тому же результату, следуя по тернистому пути теории сопромата.

Так как балка прогнулась (в хорошем значении этого слова), получается, что и продольная ось, проходящая через центры тяжести поперечных сечений всех точек балки, и до приложения нагрузки совпадавшая с осью х, сместилась. Это смещение центра тяжести поперечного сечения по оси у называется прогибом балки f. Кроме того, очевидно, что на опоре эта самая продольная ось теперь находится под некоторым углом θ к оси х, а в точке действия сосредоточенной нагрузки угол поворота = 0, так как нагрузка у нас приложена посредине и балка прогнулась симметрично. Угол поворота принято обозначать "θ", а прогиб "f" (во многих справочниках по сопромату прогиб обозначается как "ν", "w" или любыми другими литерами, но нам, как практикам, удобнее использовать обозначение "f", принятое в СНиПах).

Как определить этот самый прогиб мы пока не знаем, но зато мы знаем, что нагрузка, действуя на балку, создает изгибающий момент. А изгибающий момент создает внутренние нормальные сжимающие и растягивающие напряжения в поперечных сечениях балки. Эти самые внутренние напряжения приводят к тому, что в верхней части балка сжимается, а в нижней растягивается, при этом длина балки по оси, проходящей через центры тяжести поперечных сечений остается такой же, в верхней части длина балки уменьшается, а в нижней части увеличивается, причем чем дальше расположены точки поперечных сечений от продольной оси, тем больше будет деформация. Определить эту самую деформацию мы можем используя еще одну характеристику материала - модуль упругости.

Если мы возьмем кусок бинтовой резины и попробуем его растянуть, то обнаружим, что резина растягивается очень легко, а выражаясь по научному деформируется на значительную величину при воздействии даже небольшой нагрузки. Если мы попробуем проделать то же самое с нашей линейкой, то растянуть ее даже на десятые доли миллиметра руками вряд ли получится, даже если прилагать к линейке нагрузку в десятки раз большую, чем к бинтовой резине. Это свойство любого материала описывается модулем Юнга, который часто называется просто модулем упругости. Физический смысл модуля Юнга при максимально допустимом загружении рассчитываемой конструкции примерно следующий: модуль Юнга показывает отношение нормальных напряжений, (которые при максимально допустимом загружении равны расчетному сопротивлению материала к относительной деформации при таком загружении:

E = R/Δ (11.1.1)

а это значит, что для работы материала в области упругих деформаций значение внутренних нормальных напряжений, действующих не абстрактно, а на вполне определенную площадь сечения, с учетом относительной деформации не должно превышать значения модуля упругости:

E ≥ N/ΔS (11.1.2)

в нашем случае балка имеет прямоугольное сечение, поэтому S = b·h, где b - ширина балки, h - высота балки.

Измеряется модуль Юнга в Паскалях или кгс/м2. Для абсолютного большинства строительных материалов модули упругости определены эмпирическим путем, узнать значение модуля для того или иного материала можно по справочнику или сводной таблице.

Определить величину деформации для поперечного сечения, к которому приложена равномерно распределенная нагрузка или сосредоточенная сила в центре тяжести поперечного сечения, очень просто. В таком сечении возникают нормальные сжимающие или растягивающие напряжения, равные по значению действующей силе, направленные противоположно и постоянные по всей высоте балки (согласно одной из аксиом теоретической механики):

Рисунок 507.10.1

и тогда определить относительную деформацию, если известны геометрические параметры балки (длина, ширина и высота) несложно, простейшие математические преобразования формулы (11.1.2) дают следующий результат:

Δ = Q/(S·Е) (11.2.1) или Δ = q·h/(S·Е) (11.2.2)

Так как расчетное сопротивление показывает какую максимальную нагрузку можно приложить к определенной площади, то в данном случае мы можем рассматривать действие сосредоточенной нагрузки на всю площадь сечения нашей конструкции. В некоторых случаях важно определить деформации именно в точке приложения сосредоточенной нагрузки, но сейчас мы эти случаи не рассматриваем. Чтобы определить суммарную деформацию, нужно обе части уравнения умножить на длину балки:

Δl = Q·l/(b·h·Е) (11.2.3) или Δl = q·h·l/(b·h·Е) (11.2.4)

Но в рассматриваемом нами случае на поперечные сечения балки действует не сосредоточенная сила, приложенная к центру тяжести поперечного сечения, а изгибающий момент, который можно представить в виде следующей нагрузки:

Рисунок 149.8.3 

При такой нагрузке максимальные внутренние напряжения и соответственно максимальные деформации будут происходить в самой верхней и в самой нижней части балки, а посредине никаких деформаций не будет. Равнодействующую для такой распределенной нагрузки и плечо действия сосредоточенной силы мы находили в предыдущей части (2), когда определяли момент сопротивления балки. Поэтому теперь без особого труда можем определить суммарную деформацию в самой верхней и в самой нижней части балки:

Δх = M·х/((h/3)·b·(h/2)·Е) (11.3.1)

или

Δх = M·х/(W·Е) (11.3.2)

так как W = b·h2/6 (10.6)

Эту же формулу мы можем получить и другим способом. Как мы знаем, момент сопротивления поперечного сечения балки должен удовлетворять следующему условию:

W ≥ М / R (10.3)

Если мы будем рассматривать эту зависимость как уравнение и заменим в этом уравнении значение R на ΔЕ, получим следующее уравнение:

W = М / ΔЕ (11.4.1)

И тогда:

М = WΔЕ (11.4.2) a Δ = M/(W·Е) (11.4.5) и соответственно Δх = M·х/(W·Е) (11.3.2)

В результате деформации, которую мы только что определили, наша балка могла была бы выглядеть так:

Рисунок 11.2. Предполагаемая (для наглядности) деформация балки

то есть в результате деформаций самая верхняя и самая нижняя точки поперечного сечения сместятся на величину Δх. А это значит, что зная величину деформации и высоту балки, мы можем определить угол поворота θ поперечного сечения на опоре балки. Из школьного курса геометрии мы знаем, что отношение катетов прямоугольного треугольника (в нашем случае катеты Δх и h/2) равно тангенсу угла θ:

tgφ = Δх/(h/2) (11.5.1)

и тогда

tgφ = 2 M·х/(h·W·Е) (11.5.3)

Если вспомнить, что момент инерции - это момент сопротивления поперечного сечения, умноженный на расстояние от центра тяжести до крайней точки сечения или наоборот, момент сопротивления - это момент инерции, разделенный на расстояние от центра тяжести до крайней точки сечения:

W = I/(h/2) (10.7) или I = W·h/2 (10.7.2)

то мы можем заменить момент сопротивления на момент инерции:

tgφ = M·х/(I·Е) (11.5.4)

хотя делать это было не обязательно, но таким образом мы получили формулу угла поворота почти такой, как она дается во всех учебниках и справочниках по сопромату. Главное отличие в том, что обычно речь идет о угле поворота, а не о тангенсе угла. И хотя при малых деформациях значения тангенса угла и угол сопоставимы, но тем не менее угол и тангенс угла - это разные вещи (впрочем в некоторых справочниках, например: Фесик С.П. "Справочник по сопротивлению материалов" Киев: Будiвельник. - 1982 переход от тангенса к углу упоминается, хотя и без достаточных на мой взгляд объяснений). Более того, если быть совсем уж точным, то таким способом мы определяем отношение продольной деформации к высоте балки

Рассчитываемые элементы далеко не всегда имеют прямоугольное сечение, как наша рассматриваемая линейка. В качестве балок и перемычек могут использоваться различные горячекатаные профили, тесанные и не тесанные бревна и вообще все, что угодно. Тем не менее понимание принципов расчета момента инерции позволяет определить момент инерции для поперечного сечения любой, даже очень сложной геометрической формы. В абсолютном большинстве случаев вычислять самому момент инерции нет необходимости, для металлических профилей сложного сечения (уголки, швеллера, двутавры и др.) момент инерции, как впрочем и момент сопротивления определяется по сортаменту. Для элементов круглого овального, треугольного сечения и некоторых других видов сечения определить момент инерции можно по соответствующей таблице.

Если рассматривать суммарную деформацию всей балки, т.е. по всей длине l, то очевидно, что суммарная деформация при наших нагрузках не может быть только с одной стороны балки, как показано на рисунке 11.3.а:

Рисунок 11.3.

Так как к нашей балке нагрузка приложена посредине, в результате чего реакции на опорах, возникающие в результате действия нагрузки равны между собой и каждая равна половине приложенной нагрузки, то скорее при этих условиях суммарная деформация будет выглядеть так, как показано на рисунке 11.3.b и тогда в нашем конкретном случае угол наклона поперечного сечения на каждой из опор будет:

tgθ = M·х/(2IЕ) (11.5.5)

Пока мы определяли тангенс угла поворота простым графоаналитическим методом и в случае, когда нагрузка к балке приложена посредине, это у нас неплохо получилось. Но варианты приложения нагрузок к балке бывают всякие и хотя суммарная деформация всегда будет равна Δl, но угол наклона поперечных сечений на опорах может быть разным. Если мы присмотримся к формулам (11.5.4) и (11.5.5) повнимательнее, то увидим, что мы умножаем значение момента в некоторой точке на величину х, которая с точки зрения теоретической механики ни чем не отличается от понятия - "плечо действия силы". Получается, что для определения тангенса угла поворота мы должны умножить значение момента на плечо действия момента, и значит, понятие "плечо" можно применить не только к силе, но и к моменту. Когда мы использовали понятие плеча действия силы, открытое еще Архимедом, то мы и предполагали как далеко это может нас завести. Метод, показанный на рисунке 5.3, дал нам значение плеча момента = х/2. Теперь попробуем определить плечо момента другим способом (графоаналитический метод). Тут нам пригодятся эпюры, построенные для балки на шарнирных опорах:

               

          Рисунок 149.7.1                                                             Рисунок 149.7.2

Теория сопротивления материалов позволяет рассматривать внутренние нормальные напряжения, характеризуемые эпюрой "М" рисунка 149.7.1 для балки с постоянной жесткостью, как некую внешнюю фиктивную нагрузку. Тогда площадь эпюры "М" от начала балки до середины пролета - это фиктивная опорная реакция материала балки на равномерно изменяющуюся нагрузку. А фиктивный изгибающий момент - это площадь эпюры "М", умноженная на расстояние от центра тяжести эпюры "М" до рассматриваемой точки. Так как значение изгибающего момента посредине пролета составляет Ql/4, то площадь такой фигуры составит Ql/4(l/2)(1/2) = Ql2/16. А если это значение разделить на жесткость ЕI, то мы получим значение тангенса угла поворота.

Забегая наперед, определим значение прогиба. Расстояние от центра тяжести треугольной эпюры "М" до середины пролета равно l/6, тогда фиктивный изгибающий момент составит (Ql2/16)l/2 - (Ql2/16)l/6 = Ql3/48. Тогда прогиб f = Ql3/48EI. А так как эпюра моментов у нас расположена снизу балки, то такая фиктивная нагрузка будет в итоге давать отрицательное значение угла поворота и прогиба, что в общем-то логично, так как при таком действии нагрузки прогиб - смещение центра тяжести поперечного сечения будет происходить вниз по оси у.

Характерная особенность графоаналитического метода состоит в том, что количество вычислений можно еще сократить. Для этого нужно умножить площадь эпюры фиктивной нагрузки на расстояние от центра тяжести эпюры до начала координат, а не до рассматриваемой точки на оси. Например, для вышеприведенного случая (Ql2/16)l/3 = Ql3/48

При равномерно распределенной нагрузке эпюра моментов описывается квадратичной параболой, определить площадь такой фигуры и расстояние до центра тяжести сложнее, но для того нам и нужны знания по геометрии, чтобы можно было определить площадь любой фигуры и положение центра тяжести такой фигуры.

Таким образом получается, что для балки, на которую действует сосредоточенная нагрузка в середине балки при х=l/2:

tgθ = М·(x/2)/(ЕI) = ((Ql/4)·(l/4))/(ЕI) = Ql2/(16EI) (11.6.1)

То, что мы только что делали называется интегрированием, ведь если умножить значение значение эпюры "Q" (рисунок 149.7.1) на длину действия нагрузки, мы тем самым определим площадь прямоугольника со сторонами "Q" и х, при этом площадь данного прямоугольника равняется значению эпюры "М" в точке х.

Теоретически получается, что мы можем определить значение тангенса угла поворота, интегрируя одно из уравнений моментов, составленных для нашей балки. Максимальное значение тангенса угла поворота для балки на двух шарнирных опорах, на которую действует сосредоточенная нагрузка посредине (рисунок 149.7.1), будет при х=l/2

tgθ = ∫Mdx/(EI) = ∫Axdx/(EI)= Ax2/(2EI) = (Q/2)·(l/2)2/(2ЕI) = Ql2/(16EI) (11.6.2)

где А - это реакция опоры = Q/2

При распределенной нагрузке интегрирование уравнения моментов: q(l/2)·x - qx2/2 для левой части балки дает следующий результат:

tgθ = ∫Mdx/(EI) = q·(l/2)·(l/2)2/(2ЕI) -q·(l/2)3/(6ЕI) = ql3/(24EI) (11.6.3)

Тот же результат мы получим и при использовании графо-аналитического метода.

Когда мы определяли угол поворота, то для наглядности предположили, что балка деформировалась так, как показано на рисунке 5.2, потом так, как показано на рисунке 11.3.b, потом мы выяснили, что если бы второй опоры не было, то балка повернулась вокруг первой опоры, но в действительности вторая опора есть и потому так балка деформироваться (при нашей нагрузке на балку) не может. Так как на опоре нет никакого вращающего момента и соответственно никаких внутренних напряжений, способных изменить геометрическую форму балки, то геометрическая форма балки на опоре остается неизменной, а внутренние напряжения, увеличивающиеся по ходу балки, деформируют балку все сильнее и это приводит к тому, что балка поворачивается вокруг шарнирных опор и этот угол поворота равен углу наклона поперечного сечения θ (так как мы рассматриваем балку-параллелепипед):

Рисунок 11.4. Реальная деформация балки.

 

Если мы просто постоим эпюру углов поворота для балки со сосредоточенной нагрузкой посредине по уравнениям для левой и для правой части балки, то эпюра будет выглядеть так:

Рисунок 11.5.

Данная эпюра была бы правильной только для балки, изображенной на рисунке 5.3.а. Очевидно, что в нашем случае эпюра так выглядеть не может и для построения правильной эпюры нужно учесть, что поперечные сечения балки имеют наклон на обоих опорах, причем наклон этот одинаковый по значению, но разный по направлению а наклон поперечного сечения балки посредине =0. Если мы опустим эпюру на Ql2/16EI, которое мы получаем при интегрировании уравнения моментов для левой части балки и которое показывает угол наклона поперечного сечения именно на опоре, то получим эпюру следующего вида:

Рисунок 11.6.

Данная эпюра абсолютно точно показывает, изменение угла поворота поперечных сечений, вдоль всей балки, а значение тангенса угла поворота на левой опоре балки не что иное, как некая постоянная С1, которую мы получаем, если интегрирование выполнять корректно. И тогда уравнение угла поворота для балки при данной нагрузке на участке 0<x<0.5l будет выглядеть так:

tgθх = - tgθA + Ax2/(2EI) (11.6.5)

Эпюра углов поворота для балки с распределенной нагрузкой визуально ни чем не отличается от эпюры углов поворота для балки со сосредоточенной нагрузкой, разница только в том, что эпюра углов поворота для балки с распределенной нагрузкой - это кубическая парабола. Уравнение угла поворота для балки с равномерно распределенной нагрузкой будет выглядеть так:

tgθх = - tgθA + Ax2/(2EI) - qx3/(6ЕI) (11.6.6)

По поводу знаков в данном уравнении. "-" означает, что рассматриваемый член уравнения как бы пытается повернуть балку против часовой стрелки относительно рассматриваемого поперечного сечения, а "+" - по часовой стрелке. Впрочем и по эпюре углов поворота видно, что значение tgθА должно быть отрицательным. Таким образом, если сечение имеет наклон по часовой стрелке относительно оси х, то оно будет отрицательным, а если против часовой стрелки - то положительным.

 

Ну и теперь самое главное, все эти разборки с углом поворота поперечного сечения нужны нам были для того, чтобы определить прогиб балки.

12. Определение прогиба.

(вернуться к основному содержанию)

Как мы видим из рисунка 11.4, треугольник с катетами h/2 и Δх является подобным треугольнику с катетом Х и вторым катетом, равным f+у, а это значит, что теперь мы можем определить значение прогиба:

tgθ = (f + y)/Х (12.1)

тогда

f + y = tgθ·X (12.2.1) или f + y = М·x·Х/(2ЕI) (12.2)

при малых значениях х значение у близко к 0, но в более дальних точках сечения значение у увеличивается. Значение у - это и есть влияние на величину прогиба наличия второй опоры. Отметим, что это значение у показывает разницу между реальным наклоном продольной оси балки и наклоном продольной оси балки, если бы балка просто поворачивалась вокруг опоры, и получается, что значение у зависит от изменения угла поворота. Кроме того, мы опять получили уравнение, в котором значение прогиба в некоторой точке зависит от тангенса угла поворота (12.2.1) и таким образом получается, что у угла поворота тоже есть "плечо действия". Например при у=f/2 (если присмотреться к левой части фотографии 1, то посредине балки это где-то так и будет) мы бы получили следующую формулу для определения прогиба:

f = М·x2/(3ЕI) (12.3.1)

Но мы не будем ничего предполагать, а воспользуемся интегрированием. Если мы проинтегрируем уравнение моментов для левой части балки, то получим значение у (эпюра для у показана бирюзовым цветом на фотографии 1):

у =∫∫∫(Q/2)dх = (Q/2)·(l/2)3/6EI = Ql3/(96EI) (12.3.2)

или площадь фиолетовой эпюры для левой части балки(рисунок 5.5), но нам нужна площадь голубой эпюры на левом участке балки (рисунок 5.6), которая в 2 раза больше площади фиолетовой эпюры. Таким образом:

f =2∫∫∫(Q/2)dх =2 (Q/2)·(l/2)3/6EI = Ql3/(48EI) (12.3.3)

Почему площадь голубой эпюры в 2 раза больше площади фиолетовой эпюры, объяснить очень легко. Площадь треугольника равна 1/2 от площади прямоугольника с теми же сторонами, площадь фигуры, описанной квадратной параболой, составляет 1/3 от площади прямоугольника с теми же сторонами. Если бы мы развернули фиолетовую эпюру, то получили бы прямоугольник, образованный голубой и фиолетовой эпюрами. Соответственно, если из площади прямоугольника вычесть 1/3, то мы получим 2/3. У этого логического ряда есть продолжение - площадь фигуры, описанной кубической параболой, составляет 1/4 от площади прямоугольника с теми же сторонами и так далее.

Мы можем найти значение прогиба и другим способом. Из рисунка 11.4 и формул (12.2) следует, что:

fх = - tgθx + ∫tgθdx (12.3.4)

fl/2 = - (Ql2/16EI) l/2 + (Ql3/96EI) = -(Ql3/48EI) (12.3.5)

В данном случае знак "-" показывает, что центр поперечного сечения балки переместится вниз по оси у относительно оси х. А теперь вернемся к фотографии 1. Под продольной осью балки изображена эпюра у, именно это значение в точке l/2 мы и вычли, решая уравнение (12.3.3).  Кроме того получается, что соотношение между f и у зависит от коэффициента предыдущего интегрирования, т.е. у = kf или f = y/k. Когда мы интегрировали уравнение сил, то получили коэффициент 1/2. Впрочем, такое же значение мы получили и тогда, когда определяли плечо действия момента. Если продолжить этот логический ряд, то получается, что при определении прогиба от распределенной нагрузки мы должны использовать коэффициент 1/3, то есть прогиб в середине балки мы можем вычислить по следующей формуле:

f= 2∫∫∫(ql/2)dx - 3∫∫∫∫qdх = (2(qlx3/6) - 3(qx4/24))/EI = 5ql4/(384EI) (12.4.4)

или

fх= - ∫tgθdx + ∫∫∫(ql/2)dx -∫∫∫∫qdх (12.4.5)

fl/2 = (- ql3x/24 + (qlx3/6) - (qx4/24))/EI = - 5ql4/(384EI) (12.4.6)

В данном случае знак "-" означает, что центр тяжести поперечного сечения перемещается вниз по оси у.

Примечание: Предложенный метод определения прогиба несколько отличается от общепринятых, так как я старался сделать основной упор на наглядность.

Если определять прогиб графоаналитическим методом, то площадь фиктивной нагрузки - эпюры моментов, описываемой квадратной параболой, будет составлять (согласно таблице 378.1) (2ql2/(8·3))l/2 = ql3/24. А расстояние от центра тяжести эпюры до начала координат составляет 5/8, Тогда фиктивный момент равен (ql3/24)(5l/(8·2)) = 5ql4/384.

Конечно же, сосредоточенная нагрузка к балке может быть приложена и не посредине, распределенная нагрузка может быть не только равномерно распределенной и действовать не по всей длине балки, да и варианты крепления балки на опорах бывают разные. Но для того и существуют готовые формулы, чтобы ими пользоваться.

-Позвольте! - Скажете вы, - Все это хорошо, но как быть с касательными напряжениями? Ведь они действуют вдоль оси у и потому должны как-то влиять на прогиб!

Все верно. Касательные напряжения действительно влияют на прогиб, однако для балок с соотношением l/h > 10 это влияние очень незначительно и потому допустимо для определения прогиба пользоваться изложенным в данной статье методом.

Но это еще не все, как мы уже говорили, определить значение прогиба опытным путем достаточно просто по методу, описанному в самом начале статьи. Так так ничего лучшего под рукой не было, то я взял деревянную линейку, прообраз которой я так долго описывал (см. фотографию 1). Деревянная линейка имела размеры около 91.5 см, ширину b=4.96 см и высоту h=0.32 cм (высоту и ширину определял штангенциркулем). Затем я положил линейку на опоры, при этом расстояние между опорами составило около 90 см и таким образом получил балку с пролетом l=90 см. Под воздействием собственного веса линейка конечно же немного прогнулась, но столь малый прогиб меня не интересовал. Я измерил рулеткой (точность до 1 мм) расстояние от пола до низа линейки (77.65 см), затем приложил посредине условно сосредоточенную нагрузку (поместил посредине мерный стакан весом около 52 грамм с 250 граммами воды) и измерил расстояние от пола до низа линейки при нагрузке (75.5 см). Разница этих двух измерений и составила искомый прогиб. Таким образом величина прогиба определенного опытным путем составила 77.65 - 75.5 = 2.15 см. Осталось только найти модуль упругости для древесины, определить момент инерции для данного сечения и точно посчитать нагрузку. Модуль упругости Е для древесины = 105 кгс/см2, момент инерции прямоугольного сечения Iz = bh3/12 = 4.98·0.323/12 = 0.01359872 см4, полная нагрузка - 0.302 кг.

Расчет прогиба по формуле дал: f = Ql3/(48EI) = 0.302·903/(48·105·0.0136) = 3.37 см. Напомню, что прогиб, определенный опытным путем, составил: f = 2.15 см. Возможно следовало учесть влияние на прогиб первой производной функции - тангенса угла поворота? Ведь угол наклона, судя по фотографии, достаточно большой.

Проверяем: tgθ = Ql2/(16EI) = 0.302·902/(16·105·0.0136) = 0.11233. Тогда согласно формулы (542.12) f = 3.37/((1 + 0.1122)3/2) = 3.307 см. Т.е. влияние конечно есть, но оно не превышает 2% или 0.63 мм. 

Результат меня сначала удивил, но потом объяснений для такого расхождения нашлось несколько, в частности в середине поперечное сечение линейки было не прямоугольным, так как линейка была деформирована от времени и воздействия воды, соответственно момент инерции для такого сечения больше чем, для прямоугольного, кроме того, линейка изготовлена не из сосны, а из более твердой породы древесины, для которой и модуль упругости следует принимать больше. Да и с научной точки зрения одного результата совершенно недостаточно, чтобы говорить о каких-либо закономерностях. После этого я проверил величину прогиба для деревянного бруска с моментом инерции I=2.02 см4, длиной более 2 м при пролете 2 м под нагрузкой 2 кг, приложенной посредине бруска и тогда значение прогиба, определенного теоретическим путем и опытным путем, совпало до десятых долей миллиметра. Конечно, можно было бы и дальше продолжать эксперименты, но так уж получилось, что до меня это уже сделали сотни других людей и получили на практике результаты, очень близкие к теоретическим. А если еще учесть, что идеально изотропные материалы бывают только в теории, то это очень хорошие результаты.

13. Определение угла поворота через прогиб.

(вернуться к основному содержанию)

Определить значение угла поворота для шарнирно опертой балки, на которую действует только изгибающий момент M на одной из опор, например на опоре А, казалось бы, проще простого:

tgθх = - tgθA + Мx/(EI) - Аx2/(2ЕI) (13.1.1)

где А = М/l, (B = - M/l), но для этого нужно знать угол поворота на опоре А, а мы его не знаем, однако вычислить его помогает понимание того, что прогиб на опорах будет равен нулю и тогда:

fA = tgθBl - Bl3/(6EI) = 0; tgθB = - Ml3/(6l2EI) = - Ml/(6EI) (13.1.2)

fB = tgθAl + Ml2/(2EI)- Al3/(6EI) = 0; tgθA = - Ml/(3EI) (13.1.3)

Как видим, угол поворота на опоре к которой приложен изгибающий момент, в два раза больше угла поворота на противоположной опоре, это очень важная закономерность, которая в дальнейшем нам очень пригодится.

Когда сосредоточенная нагрузка к балке приложена не по центру тяжести или распределенная нагрузка является неравномерной, то углы поворота на опорах определяются через прогиб, как в вышеприведенном примере. Другими словами - значения начальных параметров определяются в ходе решения дифференциальных уравнений.

Расчет металлической балки на прогиб: учимся составлять формулы

Приветствую тебя, читатель экспресс-курса — «сопромат для чайников» на сайте – SoproMats.ru. Меня зовут Константин Вавилов, я являюсь автором статей по сопромату и других материалов данного ресурса. В этой статье, будем рассматривать универсальную методику расчета прогибов балки — метод начальных параметров. Как и любая другая статья для чайников, на нашем проекте, этот материал будет изложен максимально просто, лаконично и без лишних заумных терминов.

В качестве примера, возьмем металлическую балку на двух опорах. Запишем для нее формулу для вычисления прогиба, посчитаем его численное значение. И также в конце этой статьи дам ссылки на другие полезные статьи с примерами определения прогибов для различных расчетных схем.

Что такое прогиб балки?

Под действием внешней нагрузки, поперечные сечения балки перемещаются вертикально (вверх или вниз), эти перемещения называются прогибами. Сопромат позволяет нам определить прогиб балки, зная ее геометрические параметры: длину, размеры поперечного сечения. И также нужно знать материал, из которого изготовлена балка (модуль упругости).

Кстати! Помимо вертикальных перемещений, поперечные сечения балки, поворачиваются на определенный угол. И эти величины также можно определить методом начальных параметров.

ν-прогиб сечения C; θ-угол поворота сечения C.

Прогибы балки необходимо рассчитывать, при расчете на жесткость. Расчётные значения прогибов не должны превышать допустимых значений. Если расчетное значение меньше, чем допустимое, то считают, что условие жесткости элемента конструкции соблюдается. Если же нет, то принимаются меры по повышению жесткости. Например, задаются другим материалом, у которого модуль упругости БОЛЬШЕ. Либо же меняют геометрические параметры балки, чаще всего, поперечное сечение. Например, если балка двутаврового профиля №12, не подходит по жесткости, принимают двутавр №14 и делают перерасчет. Если потребуется, повторяют подбор, до того момента пока не найдут тот самый – двутавр.

Метод начальных параметров

Метод начальных параметров, является довольно универсальным и простым методом. Используя этот метод можно записывать формулу для вычисления прогиба и угла поворота любого сечения балки постоянной жесткости (с одинаковым поперечным сечением по длине.)

Под начальными параметрами понимаются уже известные перемещения:

  • в опорах прогибы равны нулю;
  • в жесткой заделке прогиб и угол поворота сечения равен нулю.
Учитывая эти хитрости, их называют еще граничными условиями, определяются перемещения в других частях балки.

Расчет прогибов балки

Посмотрим, как пользоваться методом начальных параметров на примере простой балки, которая загружена всевозможными типами нагрузок, чтобы максимально охватить все тонкости этого метода:

Реакции опор

Для расчета нужно знать все внешние нагрузки, действующие на балку, в том числе и реакции, возникающие в опорах.

Если ты не знаешь, как определять реакции, то рекомендую изучить данный материал, где я как раз рассказываю, как они определяются на примере этой балки:

Система координат

Далее вводим систему координат, с началом в левой части балки (точка А):

Распределенная нагрузка

Метод начальных параметров, который будем использовать чуть позднее, работает только в том случае, когда распределенная нагрузка доходит до крайнего правого сечения, наиболее удаленного от начала системы координат. Конкретно, в нашем случае, нагрузка обрывается и такая расчетная схема неприемлема для дальнейшего расчета.

Если бы нагрузка была приложена вот таким способом:

То можно было бы сразу приступать к расчету перемещений. Нам же потребуется использовать один хитрый прием – ввести дополнительные нагрузки, одна из которых будет продолжать действующую нагрузку q, другая будет компенсировать это искусственное продолжение. Таким образом, получим эквивалентную расчетную схему, которую уже можно использовать в расчете методом начальных параметров:

Вот, собственно, и все подготовительные этапы, которые нужно сделать перед расчетом.

Приступим непосредственно к самому расчету прогиба балки. Рассмотрим наиболее интересное сечение в середине пролета, очевидно, что это сечение прогнется больше всех и при расчете на жесткость такой балки, рассчитывалось бы именно это сечение. Обзовем его буквой – C:

Относительно системы координат записываем граничные условия. Учитывая способ закрепления балки, фиксируем, что прогибы в точках А и В равны нулю, причем важны расстояния от начала координат до опор:

\[ { V }_{ A }=0\quad при\quad x=0 \]

\[ { V }_{ B }=0\quad при\quad x=8м \]

Записываем уравнение метода начальных параметров для сечения C:

\[ E{ I }_{ z }{ V }_{ C }=… \]

Произведение жесткости балки EI и прогиба сечения C будет складываться из произведения EI и прогиба сечения в начале системы координат, то есть сечения A:

\[ E{ I }_{ z }{ V }_{ C }=E{ I }_{ z }{ V }_{ A }+ … \]

Напомню, E – это модуль упругости первого рода, зависящий от материала из которого изготовлена балка, I – это момент инерции, который зависит от формы и размеров поперечного сечения балки. Также учитывается угол поворота поперечного сечения в начале системы координат, причем угол поворота дополнительно умножается на расстояние от рассматриваемого сечения до начала координат:

\[ E{ I }_{ z }{ V }_{C }=E{ I }_{ z }{ V }_{ A }+E{ I }_{ z }{ \theta }_{ A }\cdot 4+… \]

Учет внешней нагрузки

И, наконец, нужно учесть внешнюю нагрузку, но только ту, которая находится левее рассматриваемого сечения C.{ 4 } } =-2см \]

Таким образом, такая балка прогнется максимально на 2 см. Знак «минус» указывает на то, что сечение переместится вниз.

На этом, пожалуй, закончу данный урок. Если у вас возникли какие-либо вопросы по представленным материалам, задавайте вопросы в комментариях к этой статье. А также рекомендую вам посмотреть другие примеры определение прогибов этим методом. Там вы найдете более сложные задачи, определение углов поворотов, примеры расчета консольных балок (с жесткой заделкой).

Выполнение расчета прогиба деревянной балки

При действии нагрузки деревянные балки могут получать довольно большие прогибы, в результате которых нарушается их нормальная эксплуатация. Поэтому кроме расчетов по первой группе предельных состояний (прочность), необходимо выполнить расчет деревянных балок и по второй группе т. е.

по прогибам. Расчет деревянных балок на прогиб выполняется на действие нормативных нагрузок. Нормативную нагрузку получаем разделением расчетной нагрузки на коэффициент надежности по нагрузке.

Вычесление нормативной нагрузки выполнятся в сервисе расчет деревянных балокавтоматически. Нормальная эксплуатация балок возможна, в случае если расчетный прогиб деревянной балки не превышает прогиб, установленный нормами. Нормативными документами установлены конструктивные и эстетико-психологические требования.

1. Конструктивные требования к прогибам деревянных балок.

Представлены в СП64.13330.2011 “ДЕРЕВЯННЫЕ КОНСТРУКЦИИ” Таблица 19Элементы конструкцийПредельные прогибы в долях пролета, не более1 Балки междуэтажных перекрытий 2 Балки чердачных перекрытий 3 Покрытия (кроме ендов): а) прогоны, стропильные ноги б) балки консольные в) фермы, клееные балки (кроме консольных) г) плиты д) обрешетки, настилы 4 Несущие элементы ендов 5 Панели и элементы фахверха1/2501/2001/2001/1501/3001/250 1/1501/4001/250

1. Эстетическо-психологические требования к прогибам деревянных балок.

Представлены в СП20.13330.2011 “НАГРУЗКИ И ВОЗДЕЙСТВИЯ” Приложение Е.2

Элементы конструкцийВертикальные предельные прогибы 2 Балки, фермы, ригели, прогоны, плиты, настилы (включая поперечные ребра плит и настилов):а) покрытий и перекрытий, открытых для обзора, при пролете l, м: l<1 l<3 l<6 l<12 l<24 1/1201/150 1/2001/2501/300В случае если балка скрыта (к примеру, под подшивным потолком) то соблюдение эстетико-психологических требований не является обязательным. В данном случае необходимо выполнить расчет прогибов балкина соблюдение только конструктивных требований по прогибам.

Чтобы построить деревянный дом необходимо провести расчёт несущей способности деревянной балки. Также особое значение в строительной терминологии имеет определение  прогиба.

Без качественного математического анализа всех параметров просто невозможно построить дом из бруса. Именно поэтому перед тем как начать строительство крайне важно правильно рассчитать прогиб деревянных балок. Данные расчёты послужат залогом вашей уверенности в качестве и надёжности постройки.

Что нужно для того чтобы сделать правильный расчёт

Расчёт несущей способности и прогиба деревянных балок не такая простая задача, как может показаться на первый взгляд. Чтобы определить, сколько досок вам нужно, а также, какой у них должен быть размер необходимо потратить немало времени, или же вы просто можете воспользоваться нашим калькулятором.

Во-первых, нужно замерить пролёт, который вы собираетесь перекрыть деревянными балками.

Во-вторых, уделите повышенное внимание методу крепления. Крайне важно, насколько глубоко фиксирующие элементы будут заходить в стену. Только после этого вы сможете сделать расчёт несущей способности вместе с прогибом и ряда других не менее важных параметров.

Длина

Перед тем как рассчитать несущую способность и прогиб, нужно узнать длину каждой деревянной доски.

Данный параметр определяется длиной пролёта. Тем не менее это не всё. Вы должны провести расчёт с некоторым запасом.

Важно! Если деревянные балки заделываться в стены — это напрямую влияет на их длину и все дальнейшие расчёты.

При подсчёте особое значение имеет материал, из которого сделан дом. Если это кирпич, доски будут монтироваться внутрь гнёзд. Приблизительная глубина около 100—150 мм.

Когда речь идёт о деревянных постройках параметры согласно СНиПам сильно меняются. Теперь достаточно глубины в 70—90 мм. Естественно, что из-за этого  также изменится конечная несущая способность.

Если в процессе монтажа применяются хомуты или кронштейны, то длина брёвен или досок соответствует проёму. Проще говоря, высчитайте расстояние от стены до стены и в итоге сможете узнать несущую способность всей конструкции.

Важно! При формировании ската крыши брёвна выносятся за стены на 30—50 сантиметров. Это нужно учесть при подсчёте способности конструкции противостоять нагрузкам.

К сожалению, далеко не всё зависит от фантазии архитектора, когда дело касается исключительно математики. Для обрезной доски максимальная длина шесть метров. В противном случае несущая способность уменьшается, а прогиб становится больше.

Само собой, что сейчас не редкость дома, у которых пролёт достигает 10—12 метров. В таком случае используется клееный брус.

Он может быть двутавровым или же прямоугольным. Также для большей надёжности можно использовать опоры. В их качестве идеально подходят дополнительные стены или колоны.

Совет! Многие строители при необходимости перекрыть длинный пролёт используют фермы.

Общая информация по методологии расчёта

В большинстве случаев в малоэтажном строительстве применяются однопролётные балки.

Они могут быть в виде брёвен, досок или брусьев. Длина элементов может варьироваться в большом диапазоне. В большинстве случаев она напрямую зависит от параметров строения, которые вы собираетесь возвести.

Внимание! Представленный в конце странички калькулятор расчета балок на прогиб позволит вам просчитать все значения с минимальными затратами времени. Чтобы воспользоваться программой, достаточно ввести базовые данные.

Роль несущих элементов в конструкции выполняют деревянные бруски, высота сечения которых составляет от 140 до 250 мм, толщина лежит в диапазоне 55—155 мм. Это наиболее часто используемые параметры при расчёте несущей способности деревянных балок.

Очень часто профессиональные строители для того чтобы усилить конструкцию используют перекрёстную схему монтажа балок. Именно эта методика даёт наилучший результат при минимальных затратах времени и материалов.

Если рассматривать длину оптимального пролёта при расчёте несущей способности деревянных балок, то лучше всего ограничить фантазию архитектора в диапазоне от двух с половиной до четырёх метров.

Внимание! Лучшим сечением для деревянных балок считается площадь, у которой высота и ширина соотносятся как 1,5 к 1.

Как рассчитать несущую способность и прогиб

Стоит признать, что за множество лет практики в строительном ремесле был выработан некий канон, который чаще всего используют для того, чтобы провести расчёт несущей способности:

M/W<=Rд

Расшифруем значение каждой переменной в формуле:

    Буква Мвначале формулы указывает на изгибающий момент. Он исчисляется в кгс*м.Wобозначает момент сопротивления. Единицы измерения см3.

Расчёт прогиба деревянной балки является частью, представленной выше формулы. Буква Муказывает нам на данный показатель. Чтобы узнать параметр применяется следующая формула:

M=(ql2)/8

В формуле расчёта прогиба есть всего две переменных, но именно они в наибольшей степени определяют, какой в конечном итоге будет несущая способность деревянной балки:

    Символ q показывает нагрузку, которую способна выдержать доска.В свою очередь буква l— это длина одной деревянной балки.

Внимание! Результат расчёт несущей способности и прогиба зависит от материала из которого сделана балка, а также от способа его обработки.

Насколько важно правильно рассчитать прогиб

Этот параметр крайне важен для прочности всей конструкции. Дело в том, что одной стойкости бруса недостаточно для долгой и надёжной службы, ведь со временем его прогиб под нагрузкой может увеличиваться.

Прогиб не просто портит эстетичный вид перекрытия. Если данный параметр превысит показатель в 1/250 от общей длины элемента перекрытия, то вероятность возникновения аварийной ситуации возрастёт в десятки раз.

Так зачем нужен калькулятор

Представленный ниже калькулятор позволит вам моментально просчитать прогиб, несущую способность и многие другие параметры без использования формул и подсчётов. Всего несколько секунд и данные по вашему будущему дому будут готовы.

В современном индивидуальном строительстве деревянные балки используются почти в каждом проекте. Найти постройку, в которой не используются деревянные перекрытия, практически невозможно. Деревянные балки применяются и для устройства полов, и в качестве несущих элементов, как опоры для межэтажных и чердачных перекрытий.

Формула расчета прогиба балки.

Известно, что деревянные балки, как и любые другие, могут прогибаться под воздействием различных нагрузок.

Эта величина — стрелка прогиба — зависит от материала, характера нагрузки и геометрических характеристик конструкции. Небольшой прогиб вполне допустим. Когда мы ходим, например, по деревянному настилу, то чувствуем, как пол слегка пружинит, однако если такие деформации незначительны, то нас это мало беспокоит.

Насколько можно допустить прогиб, определяется двумя факторами:

    Прогиб не должен превышать расчетных допустимых значений.Прогиб не должен мешать эксплуатации здания.

Чтобы узнать, насколько будут деформироваться деревянные элементы в конкретном случае, нужно произвести расчеты на прочность и жесткость. Подробные и детальные расчеты такого рода — это работа инженеров-строителей, однако, имея навык математических вычислений и зная несколько формул из курса сопротивления материалов, вполне можно самостоятельно рассчитать деревянную балку.

Вспомогательная таблица для расчета количества балок.

Любая постройка должна быть прочной.

Именно поэтому балки перекрытия проверяют в первую очередь на прочность, чтобы конструкция могла выдерживать все необходимые нагрузки, не разрушаясь. Кроме прочности конструкция должна обладать жесткостью и устойчивостью. Величина прогиба является элементом расчета на жесткость.

Прочность и жесткость неразрывно связаны между собой. Вначале делают расчеты на прочность, а затем, используя полученные результаты, можно сделать расчет прогиба.

Чтобы правильно спроектировать собственный загородный дом, необязательно знать полный курс сопротивления материалов. Но углубляться в слишком подробные вычисления не стоит, как и просчитывать различные варианты конструкций.

Чтобы не ошибиться, лучше воспользоваться укрупненными расчетами, применяя простые схемы, а высчитывая нагрузки на несущие элементы, всегда делать небольшой запас в большую сторону.

Алгоритм вычисления прогиба

Рассмотрим упрощенную схему расчета, опуская некоторые специальные термины, и формулы для расчета двух основных случаев нагружения, принятых в строительстве.

Нужно выполнить следующие действия:

    Составить расчетную схему и определить геометрические характеристики балки.Определить максимальную нагрузку на этот несущий элемент.При необходимости проверить брус на прочность по изгибающему моменту.Вычислить максимальный прогиб.

Расчетная схема балки и момент инерции

Расчетную схему сделать довольно просто. Нужно знать размеры и форму поперечного сечения элемента конструкции, способ опирания, а также пролет, то есть расстояние между опорами. Например, если вы укладываете опорные брусья перекрытия на несущие стены дома, а расстояние между стенами 4 м, то пролет будет l=4 м.

Деревянные балки рассчитывают как свободно опертые. Если это балка перекрытия, то принимается схема с равномерно распределенной нагрузкой q. В случае если нужно определить изгиб от сосредоточенной нагрузки (например, от небольшой печки, выложенной прямо на перекрытии), принимается схема с сосредоточенной нагрузкой F, равной весу, который будет давить на конструкцию.

Для определения величины прогиба f необходима такая геометрическая характеристика, как момент инерции сечения J.4.

Здесь нужно обратить внимание на то, что момент инерции прямоугольного сечения зависит от того, как оно сориентировано в пространстве. Если брус положить широкой стороной на опоры, то момент инерции будет значительно меньше, а прогиб — больше.

Этот эффект каждый может прочувствовать на практике. Все знают, что доска, положенная обычным способом, прогибается гораздо сильнее, чем та же доска, положенная на ребро. Это свойство очень хорошо отражается в самой формуле для вычисления момента инерции.

Определение максимальной нагрузки

Для определения максимальной нагрузки на балку нужно сложить все ее составляющие: вес самого бруса, вес перекрытия, вес обстановки вместе с находящимися там людьми, вес перегородок.

Все это нужно сделать в пересчете на 1 пог. м балки. Таким образом, нагрузка q будет состоять из следующих показателей:

Расчет на смятие опорных участков балки.

вес 1 пог.

м балки;вес 1 кв. м перекрытия;временная нагрузка на перекрытие;нагрузка от перегородок на 1 кв.3/48*E*J, где:

F — сила давления на брус, например, вес печи или другого тяжелого оборудования.

Модуль упругости Е для разных видов древесины различен, эта характеристика зависит не только от породы дерева, но и от вида бруса — цельные балки, клееный брус или оцилиндрованное бревно имеют различные модули упругости.

Подобные вычисления могут производиться с различными целями. Если вам нужно просто узнать, в каких пределах будут находиться деформации элементов конструкции, то после определения стрелки прогиба дело можно считать завершенным. Но если вас интересует, насколько полученные результаты соответствуют строительным нормам, то необходимо выполнить сравнение полученных результатов с цифрами, приведенными в соответствующих нормативных документах.

Балка является основным элементом несущей конструкции сооружения.

При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах.

Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно.Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Виды балок

Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению.

Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Для расчета максимального прогиба следует учитывать:

    Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.Форма поперечного сечения и другие геометрические характеристики.Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

    электросварка;заклепки;болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео:

Прочность и жесткость балки

Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.

Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали.

Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.

Существует два основных метода расчета прочности и жесткости:

    Простой. При использовании данного метода применяется увеличительный коэффициент.Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.

Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.

Расчет на жесткость

Для расчета прочности балки на изгиб применяется формула:

Где:

M – максимальный момент, который возникает в балке;

Wn,min– момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.

Ryявляется расчетным сопротивлением стали при изгибе. Зависит от вида стали.

γcпредставляет собой коэффициент условий работы, который является табличной величиной.

Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:

    Составление расчетной схемы объекта.Расчет размеров балки и ее сечения.Вычисление максимальной нагрузки, которая воздействует на балку.Определение точки приложения максимальной нагрузки.Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.Вычисление значения жесткости или максимально прогиба балки.

Чтобы составить расчетную схему, потребуются такие данные:

    размеры балки, длину консолей и пролет между ними;размер и форму поперечного сечения;особенности нагрузки на конструкцию и точно ее приложения;материал и его свойства.

Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

Где:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий.

Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

    Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.Варианты нагружения консольного стержня, который закреплен жестко.Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

    материал изготовления – древесина;плотность составляет 600 кг/м3;длина составляет 4 м;сечение материала составляет 150*200 мм;масса перекрывающих элементов составляет 60 кг/м²;максимальная нагрузка конструкции составляет 249 кг/м;упругость материала составляет 100 000 кгс/ м²;J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

    вес одного метра балки;вес м2 перекрытия;расстояние, которое оставляется между балками;временная нагрузка;нагрузка от перегородок на перекрытие.

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = ( 60 + 250 + 75 ) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины.

Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид.

Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.

Источники:

  • rascheta.net
  • bouw.ru
  • 1poderevu.ru
  • viascio.ru

несущая способность, на двух опорах, пример

В современном индивидуальном строительстве деревянные балки используются почти в каждом проекте. Найти постройку, в которой не используются деревянные перекрытия, практически невозможно. Деревянные балки применяются и для устройства полов, и в качестве несущих элементов, как опоры для межэтажных и чердачных перекрытий.

Формула расчета прогиба балки.

Известно, что деревянные балки, как и любые другие, могут прогибаться под воздействием различных нагрузок. Эта величина – стрелка прогиба – зависит от материала, характера нагрузки и геометрических характеристик конструкции. Небольшой прогиб вполне допустим. Когда мы ходим, например, по деревянному настилу, то чувствуем, как пол слегка пружинит, однако если такие деформации незначительны, то нас это мало беспокоит.

Насколько можно допустить прогиб, определяется двумя факторами:

  1. Прогиб не должен превышать расчетных допустимых значений.
  2. Прогиб не должен мешать эксплуатации здания.

Чтобы узнать, насколько будут деформироваться деревянные элементы в конкретном случае, нужно произвести расчеты на прочность и жесткость. Подробные и детальные расчеты такого рода – это работа инженеров-строителей, однако, имея навык математических вычислений и зная несколько формул из курса сопротивления материалов, вполне можно самостоятельно рассчитать деревянную балку.

Вспомогательная таблица для расчета количества балок.

Любая постройка должна быть прочной. Именно поэтому балки перекрытия проверяют в первую очередь на прочность, чтобы конструкция могла выдерживать все необходимые нагрузки, не разрушаясь. Кроме прочности конструкция должна обладать жесткостью и устойчивостью. Величина прогиба является элементом расчета на жесткость.

Прочность и жесткость неразрывно связаны между собой. Вначале делают расчеты на прочность, а затем, используя полученные результаты, можно сделать расчет прогиба.

Чтобы правильно спроектировать собственный загородный дом, необязательно знать полный курс сопротивления материалов. Но углубляться в слишком подробные вычисления не стоит, как и просчитывать различные варианты конструкций.

Чтобы не ошибиться, лучше воспользоваться укрупненными расчетами, применяя простые схемы, а высчитывая нагрузки на несущие элементы, всегда делать небольшой запас в большую сторону.

Алгоритм вычисления прогиба

Рассмотрим упрощенную схему расчета, опуская некоторые специальные термины, и формулы для расчета двух основных случаев нагружения, принятых в строительстве.

Нужно выполнить следующие действия:

  1. Составить расчетную схему и определить геометрические характеристики балки.
  2. Определить максимальную нагрузку на этот несущий элемент.
  3. При необходимости проверить брус на прочность по изгибающему моменту.
  4. Вычислить максимальный прогиб.

Расчетная схема балки и момент инерции

Расчетную схему сделать довольно просто. Нужно знать размеры и форму поперечного сечения элемента конструкции, способ опирания, а также пролет, то есть расстояние между опорами. Например, если вы укладываете опорные брусья перекрытия на несущие стены дома, а расстояние между стенами 4 м, то пролет будет l=4 м.

Деревянные балки рассчитывают как свободно опертые. Если это балка перекрытия, то принимается схема с равномерно распределенной нагрузкой q. В случае если нужно определить изгиб от сосредоточенной нагрузки (например, от небольшой печки, выложенной прямо на перекрытии), принимается схема с сосредоточенной нагрузкой F, равной весу, который будет давить на конструкцию.4.

Здесь нужно обратить внимание на то, что момент инерции прямоугольного сечения зависит от того, как оно сориентировано в пространстве. Если брус положить широкой стороной на опоры, то момент инерции будет значительно меньше, а прогиб – больше. Этот эффект каждый может прочувствовать на практике. Все знают, что доска, положенная обычным способом, прогибается гораздо сильнее, чем та же доска, положенная на ребро. Это свойство очень хорошо отражается в самой формуле для вычисления момента инерции.

Определение максимальной нагрузки

Для определения максимальной нагрузки на балку нужно сложить все ее составляющие: вес самого бруса, вес перекрытия, вес обстановки вместе с находящимися там людьми, вес перегородок. Все это нужно сделать в пересчете на 1 пог.м балки. Таким образом, нагрузка q будет состоять из следующих показателей:

Расчет на смятие опорных участков балки.

  • вес 1 пог.м балки;
  • вес 1 кв.м перекрытия;
  • временная нагрузка на перекрытие;
  • нагрузка от перегородок на 1 кв.3/48*E*J, где:

    F – сила давления на брус, например, вес печи или другого тяжелого оборудования.

    Модуль упругости Е для разных видов древесины различен, эта характеристика зависит не только от породы дерева, но и от вида бруса – цельные балки, клееный брус или оцилиндрованное бревно имеют различные модули упругости.

    Подобные вычисления могут производиться с различными целями. Если вам нужно просто узнать, в каких пределах будут находиться деформации элементов конструкции, то после определения стрелки прогиба дело можно считать завершенным. Но если вас интересует, насколько полученные результаты соответствуют строительным нормам, то необходимо выполнить сравнение полученных результатов с цифрами, приведенными в соответствующих нормативных документах.

    Расчет балок на прогиб. Максимальный прогиб балки: формула

    Балка – элемент в инженерии, представляющий собой стержень, который нагружают силы, действующие в направлении, перпендикулярном стержню. Деятельность инженеров зачастую включает в себя необходимость расчета прогиба балки под нагрузкой. Этой действие выполняется для того, чтобы ограничить максимальный прогиб балки.

    Типы

    На сегодняшний день в строительстве могут использоваться балки, изготовленные из разных материалов. Это может быть металл или дерево. Каждый конкретный случай подразумевает под собой разные балки. При этом расчет балок на прогиб может иметь некоторые отличия, которые возникают по принципу разницы в строении и используемых материалов.

    Деревянные балки

    Сегодняшнее индивидуальное строительство подразумевает под собой широкое применение балок, изготовленных из дерева. Практически каждое строение содержит в себе деревянные перекрытия. Балки из дерева могут использоваться как несущие элементы, их применяют при изготовлении полов, а также в качестве опор для перекрытий между этажами.

    Ни для кого не секрет, что деревянная, так же как и стальная балка, имеет свойство прогибаться под воздействием нагрузочных сил. Стрелка прогиба зависит от того, какой материал используется, геометрических характеристик конструкции, в которой используется балка, и характера нагрузок.

    Допустимый прогиб балки формируется из двух факторов:

    • Соответствие прогиба и допустимых значений.
    • Возможность эксплуатации здания с учетом прогиба.

    Проводимые при строительстве расчеты на прочность и жесткость позволяют максимально эффективно оценить то, какие нагрузки сможет выдерживать здание в ходе эксплуатации. Также эти расчеты позволяют узнать, какой именно будет деформация элементов конструкции в каждом конкретном случае. Пожалуй, никто не будет спорить с тем, что подробные и максимально точные расчеты – это часть обязанностей инженеров-строителей, однако с использованием нескольких формул и навыка математических вычислений можно рассчитать все необходимые величины самостоятельно.

    Для того чтобы произвести правильный расчет прогиба балки, нужно также брать во внимание тот факт, что в строительстве понятия жесткости и прочности являются неразрывными. Опираясь на данные расчета прочности, можно приступать к дальнейшим расчетам относительно жесткости. Стоит отметить, что расчет прогиба балки – один из незаменимых элементов расчета жесткости.

    Обратите ваше внимание на то, что для проведения таких вычислений самостоятельно лучше всего использовать укрупненные расчеты, прибегая при этом к достаточно простым схемам. При этом также рекомендуется делать небольшой запас в большую сторону. Особенно если расчет касается несущих элементов.

    Расчет балок на прогиб. Алгоритм работы

    На самом деле алгоритм, по которому делается подобный расчет, достаточно прост. В качестве примера рассмотрим несколько упрощенную схему проведения расчета, при этом опустив некоторые специфические термины и формулы. Для того чтобы произвести расчет балок на прогиб, необходимо выполнить ряд действий в определенном порядке. Алгоритм проведения расчетов следующий:

    • Составляется расчетная схема.
    • Определяются геометрические характеристики балки.
    • Вычисляется максимальную нагрузку на данный элемент.
    • В случае возникновения необходимости проверяется прочность бруса по изгибающему моменту.
    • Производится вычисление максимального прогиба.

    Как видите, все действия достаточно просты и вполне выполнимы.

    Составление расчетной схемы балки

    Для того чтобы составить расчетную схему, не требуется больших знаний. Для этого достаточно знать размер и форму поперечного сечения элемента, пролет между опорами и способ опирания. Пролетом является расстояние между двумя опорами. К примеру, вы используете балки как опорные брусья перекрытия для несущих стен дома, между которыми 4 м, то величина пролета будет равна 4 м.

    Вычисляя прогиб деревянной балки, их считают свободно опертыми элементами конструкции. В случае балки перекрытия для расчета принимается схема с нагрузкой, которая распределена равномерно. Обозначается она символом q. Если же нагрузка несет сосредоточенный характер, то берется схема с сосредоточенной нагрузкой, обозначаемой F.3/12, где:

    b – ширина сечения;

    h – высота сечения балки.

    Вычисления максимального уровня нагрузки

    Определение максимальной нагрузки на элемент конструкции производится с учетом целого ряда факторов и показателей. Обычно при вычислении уровня нагрузки берут во внимание вес 1 погонного метра балки, вес 1 квадратного метра перекрытия, нагрузку на перекрытие временного характера и нагрузку от перегородок на 1 квадратный метр перекрытия. Также учитывается расстояние между балками, измеренное в метрах. Для примера вычисления максимальной нагрузки на деревянную балку примем усредненные значения, согласно которым вес перекрытия составляет 60 кг/м², временная нагрузка на перекрытие равна 250 кг/м², перегородки будут весить 75 кг/м². Вес самой балки очень просто вычислить, зная ее объем и плотность. Предположим, что используется деревянная балка сечением 0,15х0,2 м. В этом случае ее вес будет составлять 18 кг/пог.м. Также для примера примем расстояние между брусьями перекрытия равным 600 мм.3/48*E*J, где:

    F – сила давления на брус.

    Также обращаем внимание на то, что значение модуля упругости, используемое в расчетах, может различаться для разных видов древесины. Влияние оказывают не только порода дерева, но и вид бруса. Поэтому цельная балка из дерева, клееный брус или оцилиндрованное бревно будут иметь разные модули упругости, а значит, и разные значения максимального прогиба.

    Вы можете преследовать разные цели, совершая расчет балок на прогиб. Если вы хотите узнать пределы деформации элементов конструкции, то по завершении расчета стрелки прогиба вы можете остановиться. Если же ваша цель – установить уровень соответствия найденных показателей строительным нормам, то их нужно сравнить с данными, которые размещены в специальных документах нормативного характера.

    Двутавровая балка

    Обратите внимание на то, что балки из двутавра применяются несколько реже в силу их формы. Однако также не стоит забывать, что такой элемент конструкции выдерживает гораздо большие нагрузки, чем уголок или швеллер, альтернативой которых может стать двутавровая балка.

    Расчет прогиба двутавровой балки стоит производить в том случае, если вы собираетесь использовать ее в качестве мощного элемента конструкции.

    Также обращаем ваше внимание на то, что не для всех типов балок из двутавра можно производить расчет прогиба. В каких же случаях разрешено рассчитать прогиб двутавровой балки? Всего таких случаев 6, которые соответствуют шести типам двутавровых балок. Эти типы следующие:

    • Балка однопролетного типа с равномерно распределенной нагрузкой.
    • Консоль с жесткой заделкой на одном конце и равномерно распределенной нагрузкой.
    • Балка из одного пролета с консолью с одной стороны, к которой прикладывается равномерно распределенная нагрузка.
    • Однопролетная балка с шарнирным типом опирания с сосредоточенной силой.
    • Однопролетная шарнирно опертая балка с двумя сосредоточенными силами.
    • Консоль с жесткой заделкой и сосредоточенной силой.

    Металлические балки

    Расчет максимального прогиба одинаковый, будь это стальная балка или же элемент из другого материала. Главное - помнить о тех величинах, которые специфические и постоянные, как к примеру модуль упругости материала. При работе с металлическими балками, важно помнить, что они могут быть изготовлены из стали или же из двутавра.

    Прогиб металлической балки, изготовленной из стали, вычисляется с учетом, что константа Е в данном случае составляет 2·105Мпа. Все остальные элементы, вроде момента инерции, вычисляются по алгоритмам, описанным выше.

    Расчет максимального прогиба для балки с двумя опорами

    В качестве примера рассмотрим схему, в которой балка находится на двух опорах, а к ней прикладывается сосредоточенная сила в произвольной точке. До момента прикладывания силы балка представляла собой прямую линию, однако под воздействием силы изменила свой вид и вследствие деформации стала кривой.

    Предположим, что плоскость ХУ является плоскостью симметрии балки на двух опорах. Все нагрузки действуют на балку в этой плоскости. В этом случае фактом будет то, что кривая, полученная в результате действия силы, также будет находиться в этой плоскости. Данная кривая получила название упругой линии балки или же линии прогибов балки. Алгебраически решить упругую линию балки и рассчитать прогиб балки, формула которого будет постоянной для балок с двумя опорами, можно следующим образом.

    Прогиб на расстоянии z от левой опоры балки при 0 ≤ z ≤ a

    F(z)=(P*a2*b2)/(6E*J*l)*(2*z/a+z/b-z3/a2*b)

    Прогиб балки на двух опорах на расстоянии z от левой опоры при а ≤ z ≤l

    f(z)=(-P*a2*b2)/(6E*J*l)*(2*(l-z)/b+(l-z)/a-(l-z)3/a+b2), где Р – прикладываемая сила, Е – модуль упругости материала, J – осевой момент инерции.

    В случае балки с двумя опорами момент инерции вычисляется следующим образом:

    J=b1h13/12, где b1 и h1 – значения ширины и высоты сечения используемой балки соответственно.

    Заключение

    В заключение можно сделать вывод о том, что самстоятельно вычислить величину максимального прогиба балки разных типов достаточно просто. Как было показано в этой статье, главное - знать некоторые характеристики, которые зависят от материала и его геометрических характеристик, а также провести вычисления по нескольким формулам, в которых каждый параметр имеет свое объяснение и не берется из ниоткуда.

    Отклонение луча: как рассчитать

    В приложениях, связанных с перемещением, существует множество ситуаций, когда линейная направляющая или привод не полностью поддерживается по всей своей длине. В этих случаях прогиб (из-за собственного веса компонента и из-за приложенных нагрузок и сил) может повлиять на ходовые качества подшипников и вызвать плохую работу в виде преждевременного износа и заедания.

    Изделия, которые могут быть установлены только на концевых опорах, таких как линейные валы или узлы приводов, или в консольной ориентации, например телескопические подшипники, обычно имеют спецификацию на максимально допустимый прогиб.Важно проверить приложение и убедиться, что этот максимальный прогиб не превышен. К счастью, большинство линейных направляющих и приводов можно смоделировать как балки, а их отклонение можно рассчитать с помощью обычных уравнений отклонения балки.

    Соображения, касающиеся материалов и конструкции

    При расчете прогиба необходимо знать свойства направляющей или привода и условия приложенной нагрузки. Что касается направляющей или привода, важными критериями являются модуль упругости и планарный момент инерции компонента.Модуль упругости является мерой жесткости материала, и его обычно можно найти в каталоге продукции. Момент инерции описывает сопротивление объекта изгибу и иногда предоставляется производителем компонента. Если момент инерции не указан, его можно разумно аппроксимировать, используя уравнение момента инерции для сплошного или полого цилиндра (для линейного круглого вала) или прямоугольника (телескопический подшипник или линейный привод).


    Модуль упругости, также известный как модуль Юнга или модуль упругости при растяжении, может быть определен как отношение напряжения (силы на единицу площади) на оси к деформации (отношение деформации по длине) вдоль этой оси.

    Планарный момент инерции (также называемый вторым моментом площади или моментом инерции площади) определяет, как точки области распределяются относительно произвольной плоскости и, следовательно, ее сопротивление изгибу.


    С точки зрения применения и конструкции критериями, влияющими на прогиб балки, являются тип опоры на концах направляющей или привода, приложенная нагрузка и длина без опоры. Когда компонент является консольным, он может быть смоделирован как фиксированная балка, а когда он поддерживается с обоих концов, он обычно может быть смоделирован как балка с простой опорой.Для консольных балок максимальное отклонение будет происходить, когда нагрузка находится на свободном конце балки, в то время как для балок с простой опорой максимальное отклонение будет иметь место, когда нагрузка находится в центре балки.

    При определении общего отклонения имейте в виду, что будут иметь две нагрузки, , которые вызывают отклонение: вес направляющей или самого привода и приложенная нагрузка. Собственный вес компонента почти всегда можно смоделировать как равномерно распределенную нагрузку, оценивая приложенную нагрузку как точечную нагрузку в месте максимального прогиба (на свободном конце консольной балки или в центре балки с простой опорой). обычно обеспечивает наихудший сценарий полного прогиба.

    Прогиб консольных балок

    Телескопические подшипники часто являются консольными, и некоторые конфигурации декартовых роботов приводят к консольному приводу на оси Y или Z. В этом случае вес балки, который достаточно однороден по длине, вызывает максимальный прогиб на конце балки.

    Изображение предоставлено: wikipedia.org

    Этот прогиб рассчитывается как:

    Где:

    q = сила на единицу длины (Н / м, фунт-сила / дюйм)

    L = длина без опоры (м, дюйм)

    E = модуль упругости (Н / м 2 , фунт-сила / дюйм 2 )

    I = планарный момент инерции (м 4 , дюйм 4 )

    Для создания сценария наихудшего прогиба мы рассматриваем приложенную нагрузку как точечную нагрузку (F) на конце балки, и результирующий прогиб можно рассчитать как:

    Сложив прогиб из-за равномерной нагрузки и прогиб из-за приложенной (точечной) нагрузки, получаем общий прогиб на конце балки:

    Прогиб свободно опертых балок

    Линейные валы и приводы часто закрепляются на концах, оставляя длину без опоры, как у балки с простой опорой.Равномерная нагрузка на балку (собственный вес вала или привода) вызовет максимальный прогиб в центре балки, который можно рассчитать как:

    Поскольку это балка с простой опорой, приложенная нагрузка может быть смоделирована как точечная нагрузка в центре балки для наихудшего сценария.

    Изображение предоставлено: wikipedia.org

    Прогиб из-за приложенной нагрузки в этом состоянии рассчитывается как:

    Полный прогиб в центре балки:

    Прогиб валов с двумя подшипниками

    Когда два подшипника используются на балке с простой опорой, как это обычно бывает с круглыми направляющими вала, приложенная нагрузка распределяется между двумя подшипниками, и максимальное отклонение происходит в двух местах: в положении на каждом подшипнике , когда подшипниковый узел (иногда называемый кареткой или столом) находится в середине вала.

    Изображение предоставлено: Thomson Linear

    Расчет отклонения балки для этого условия:

    Опять же, мы должны добавить прогиб из-за собственного веса балки плюс прогиб из-за приложенной нагрузки, чтобы получить общий прогиб:


    Существуют дополнительные сценарии монтажа и нагружения, которые могут возникнуть в некоторых приложениях, например, в приводе с фиксированной опорой на обоих концах. Но, как и в приведенных выше примерах, их можно оценить с помощью стандартных уравнений отклонения балки.Полный список сценариев опор балки и уравнений отклонения можно найти на этой странице Корнельского университета.

    Изображение предоставлено: wikipedia.org

    Легкий прогиб стальной балки

    Верулам, инженер-строитель Том. 70, No. 12, 16 июня 1992 г.

    Легкое отклонение луча

    Г-н А. Н. Бил из Лидса прислал нам записку с предложением простой процедуры приблизительного ручного расчета прогибов стальных балок.Хотя его вклад оказался слишком длинным, чтобы его можно было полностью включить в Verulam, его сокращенная версия может заинтересовать многих читателей. Г-н Бил отмечает, что, хотя расчет вручную изгибающих напряжений в балке обычно не является трудным, расчет прогибов может быть гораздо более трудоемким. Поскольку обычно нет необходимости знать прогиб с какой-либо большой степенью точности (в пределах 10%, вероятно, будет адекватным), предлагается следующий подход.

    Пример балки с простой опорой, поддерживающей равномерную нагрузку, иллюстрирует подход.

    Если мы возьмем формулу прогиба (Δ = 5WL³ / 384EI) и выразим ее через изгибающий момент (M = WL / 8), то получится Δ = 5ML³ / 48EI.

    Теперь для стальной балки напряжение упругого изгиба fbt = M / Z, где Z = 2I / D, что дает fbt = MD / 2I.
    (Z - модуль упругости, I - момент инерции, D - общая глубина сечения.)

    Подставив это в формулу прогиба, мы получим Δ = 5 fbtL³ / 24ED. При E 210 кН / мм² это становится:

    Δ (мм) = 0.992 фута / дн. . . (1)

    Здесь fbt, L и D выражены в их обычных единицах измерения: Н / мм², м и мм соответственно.

    Для всех практических целей формула

    Δ = fbtL² / D. . . (2)

    удобен в использовании, легко запоминается и отличается точностью до 1%.

    Г-н Бил затем переходит к рассмотрению других распределений нагрузки, аналогичным образом связывая центральный прогиб Δ с экстремальным напряжением волокна fbt, получая результаты, показанные в первом столбце результатов в таблице 1.Во втором столбце приведены значения для балок с фиксированным концом , которые, по мнению Билла, могут быть применены для оценки прогибов в непрерывных балках.

    Наконец, г-н Бил показывает, как его методика может использоваться для сложных нагрузок, вычисляя отклонение нагруженной балки с простой опорой, как показано на рис. 1:

    Рис.1

    Центральный изгибающий момент, рассчитанный как 444,3 кНм.
    Для сечения балки, Z = 2474 см³, D = 539,5 мм, что дает

    фут = 179,6 Н / мм².

    Простое приблизительное отклонение с использованием ур. (2) это

    ΔAPP = 179,6 x 7² / 539,5 = 16,3 мм = L / 429 OK.

    Для более точной оценки, учитывая, что большая часть момента создается центральной точечной нагрузкой, мы могли бы взять коэффициент, более близкий к значению точечной нагрузки, равному 0.8 (скажем, 0,85), что дает

    Δ = 0,85 футов x L² / D = 13,9 мм

    Для сравнения, точный компьютерный анализ той же балки дал отклонение 13,8 мм.

    Таким образом, для большинства практических целей нам нужно запомнить только четыре простые формулы для прогиба прямошовных или непрерывных стальных балок, как показано в Таблице 2.

    Эти формулы не только упрощают жизнь для простых равномерных и точечных нагрузок - они означают, что прогиб при более сложных схемах нагружения может быть рассчитан без труда.Они также особенно подходят для проверки компьютерных рисунков «обратной стороной конверта». Лучше всего то, что их легко запомнить.

    Есть желающие?

    Расчет профиля полного прогиба и оптимизация модуля Юнга для технических материалов с высокими эксплуатационными характеристиками

    Расчет профиля полного прогиба

    Образцы были подготовлены и испытаны, как описано в разделах "Методы". Поле смещения балки (рис. 2) дискретизируется в регулярной сетке, и для каждого кадра программа DIC вычисляет вертикальное (d v ) и горизонтальное (d h ) смещение каждой ячейки сетки.Среднее вертикальное смещение стержня по горизонтальной оси w ’(x) вычисляется для каждого кадра путем усреднения смещения соответствующих ячеек по высоте балки, как показано в уравнении (1). Среднее вертикальное смещение балки затем корректируется путем фиксации вертикального смещения левой опоры w (x l ) и правой w (x r ) на ноль. Это выполняется путем применения к усредненному вертикальному смещению жесткого переноса C и поворота φ , как определено в уравнениях (2) и схематически показано на рис.3. Эффектами вращения на горизонтальной оси можно пренебречь, поскольку они намного меньше дискретизации ячейки. Скорректированный профиль отклонения может быть рассчитан для каждого кадра записанного эксперимента с помощью уравнения (3), и его пример показан на рис. 4.

    Рисунок 2

    ( a ) Пример кадров, используемых для экстраполяции смещения поле балки во время испытания на трехточечный изгиб, ( b ) поле вертикального смещения d v и ( c ) поле горизонтального смещения d h до разрушения.

    Рисунок 3

    ( a ) Пример конфигурации до (черный) и во время теста (красный). Схематическое изображение средней коррекции вертикального смещения путем применения ( b ) жесткого вертикального перемещения и ( c ) поворота для получения ( d ) скорректированного профиля полного отклонения каждого кадра.

    Рис. 4: Типичная последовательность профилей прогиба до разрушения (серый цвет).

    В частности, показан профиль при пиковой нагрузке 20% (черный пунктир), 60% (черный) и 100% (красный пунктир).

    Расчет модуля Юнга

    Последовательности профилей отклонения балки были синхронизированы с историей нагрузок, записанной датчиком испытательного стенда, что привело к значению приложенной нагрузки для каждого профиля. Предполагая, что поперечные сечения балки остаются плоскими и перпендикулярными деформированной оси балки, теоретический профиль вертикального смещения (w EB ), связанный с приложенной нагрузкой, можно выразить как функцию модуля Юнга (E) эквивалентного линейно-упругая изотропная и однородная балка с заданной геометрией.В уравнении (4) теоретическое вертикальное смещение определяется как функция местоположения (x) и E, тогда как момент инерции (I) и промежуток между двумя опорами (опорами) являются двумя константами, которые фиксируются геометрией исследуемой балки. Затем для каждого кадра может быть определено одно значение модуля Юнга, index = i , путем минимизации суммы квадратов разностей между теоретическим и соответствующим экспериментальным отклонением (наименьшие квадраты) по всей длине балки между опоры.Повторяя минимизацию, показанную в уравнении (5) для каждого кадра, можно определить ряд промежуточных модулей Юнга ( E i ), которые наилучшим образом представляют отклонение балки для каждой приложенной нагрузки в каждом кадре. . Эти промежуточные модули затем можно использовать для определения единственного значения модуля Юнга, которое наилучшим образом представляет линейную зависимость напряжения от деформации для испытуемого материала в любом выбранном диапазоне приложенной нагрузки. Диапазон от 20% до 80% пиковой нагрузки был выбран для определения единственного значения модуля Юнга для каждого образца.Поэтому промежуточные модули были преобразованы в соответствующие им значения прогиба в середине пролета, и линейная регрессия методом наименьших квадратов была проведена для переменной прогиба для приложенной нагрузки в определенном диапазоне. Затем для каждого образца определяли значение модуля Юнга с помощью уравнения (6), где H, - высота образца, а м, - наклон соответствующей линии наилучшего соответствия.

    Неопределенность и оптические искажения

    Предлагаемый подход основан на предположении, что плоскость цели не смещается значительно в направлении, перпендикулярном этой плоскости, то есть к камере или от нее, что может ложно указывать на расширение или сжатие соответственно.Для этих экспериментов это можно считать правдой, поскольку максимальные смещения в плоскости в направлении нагрузки, которые были бы доминирующими, составляли всего лишь 1 или 2 пикселя. Для оценки ошибки возможного оптического искажения был рассмотрен независимый эксперимент. Постоянное вертикальное смещение применялось к идентичной спекл-панели, соединенной с верхним штампом установки для трехточечной гибки, как показано на рис. 5 (а). Эксперимент проводился в режиме управления вытеснением, со скоростью ползуна 0.4 мм / сек, что в среднем соответствует вертикальному смещению 0,8 мкм м на кадр. Поскольку максимальное вертикальное смещение до исправления, которое в среднем испытывали стержни до разрушения, обычно составляло 30-40 мкм м, в зависимости от испытуемого образца, например на рис. 2 ошибка была консервативно оценена на 100 кадрах, что соответствует общему вертикальному смещению 80 мкм м, что в два раза больше типичного диапазона смещения испытанного образца. Та же процедура, что и для образцов пучка, была использована для расчета горизонтального профиля вертикального смещения спекл-панели.На рис. 5 (б) показано исправленное отклонение луча для каждого рассматриваемого кадра. Поскольку панель подвергается жесткому вертикальному перемещению без отклонения, погрешность оценки для каждого местоположения профиля отклонения, рассчитанного с помощью предлагаемой методики, может быть определена как максимальное абсолютное значение профиля отклонения в каждом кадре. Расчетная ошибка, как показано на рис. 5 (c) (пунктирная линия), стремится к значению от 0,1 до 0,2 мкм м. Эта ошибка слишком консервативна, когда профиль прогиба используется для расчета модуля Юнга.В этом случае все местоположения профиля отклонения вместо этого сравниваются с теоретическим отклонением в процессе оптимизации. Оценка ошибки отклонения в этом случае может быть затем определена как максимальное отклонение (на полпути между двумя опорами) наилучшей интерполяционной кривой, заданной теоретическим профилем отклонения Эйлера-Бернулли. В этом случае расчетная ошибка, показанная на рис. 5 (c) (сплошная линия), ниже, чем предыдущая. Максимальное значение этой оценочной ошибки стремится к 0.1 мкм м и соответствует вертикальному смещению, аналогичному максимальному до отказа в реальных испытаниях. Поскольку модуль Юнга для любой приложенной нагрузки является линейной функцией максимального (среднего) значения профиля отклонения балки, и это значение варьируется от 15 до 20 мкм м, в зависимости от испытуемого образца, относительная погрешность, вызванная Оптические искажения по последним оценкам модуля Юнга, рассчитанного до разрушения, составляют от 0,5% до 0,7%.

    Рис. 5

    ( a ) Конфигурация балки до и после применения движения твердого тела.( b ) Оптическое искажение горизонтального профиля вертикального смещения спекл-панели во время эксперимента. ( c ) Тенденция расчетных максимальных ошибок для каждого кадра.

    Прецизионность и точность

    Ниже приводится сравнение предложенной методологии и стандартных подходов, предложенных в EN 843-2: 2006, с использованием данных смещения и деформации, извлеченных в дискретных точках из данных деформации ДИК с полным полем. Как показано на рис.6 (а), сравниваем следующее:

    • Предлагаемая методика;

    • Три виртуальных смещения (средний пролет и обе опоры, три набора, размещенные на разной высоте на видимой поверхности балки;

    • Два виртуальных тензодатчика, расположенные близко к нижней поверхности балки (скорректировано на указывают значение деформации на нижней поверхности).

    Рисунок 6

    ( a ) Представление точек, из которых вертикальные смещения рассчитываются стандартным методом с использованием трех различных наборов виртуальных датчиков смещения (оранжевые квадраты , синие треугольники и красные кресты) и площадь, использованная в предлагаемой методике (черная пунктирная линия).Две стрелки (зеленая и пурпурная) показывают расположение двух виртуальных тензодатчиков. ( b ) Схематическое изображение различных определений вертикальных смещений стандартным методом из трех точек данных в двух разных местах (желтый, синий и красный) и с помощью предлагаемой методологии на основе наилучшей интерполяции полного профиля прогиба (черный ).

    Для этого сравнения использовались наборы данных из одного репрезентативного испытания на изгиб.Алгоритм, предложенный в EN 843-2: 2006 для датчиков смещения, эквивалентен вычислению модуля Юнга по теории изгиба Эйлера-Бернулли, но с использованием только максимального вертикального смещения в середине пролета относительно среднего вертикального смещения на двух опорах, так как показано на рис. 6 (б).

    В предлагаемом методе используется весь набор данных о вертикальном смещении, охватывающий всю наблюдаемую поверхность балки, чтобы получить полный профиль отклонения для образца.Этот профиль отклонения корректируется, чтобы исключить смещение и вращение твердого тела, затем анализируется для определения кривой отклонения Эйлера-Бернулли наилучшего соответствия, как показано на рис. 6 (b). Повторяя этот процесс для каждого кадра, можно определить серию промежуточных модулей Юнга, которые наилучшим образом представляют отклонение балки для каждой приложенной нагрузки в каждом кадре. Эти промежуточные модули могут впоследствии использоваться для определения единственного значения модуля Юнга, которое наилучшим образом представляет линейную зависимость напряжения от деформации для испытуемого материала.Использование большего набора данных смещения для определения изгиба балки и более сложного метода учета перемещений и вращения твердого тела являются ключевыми особенностями, которые позволяют предлагаемому методу иметь более высокий уровень точности по сравнению с стандартный метод с тремя датчиками перемещения.

    Чтобы сравнить уровни точности двух методологий, промежуточные модули Юнга, определенные с использованием предложенной методологии, были преобразованы обратно в соответствующие им значения прогиба в середине пролета для каждой приложенной нагрузки.Таким образом, можно сравнить кривую сила-отклонение, полученную по предлагаемой методологии (т.е. в полном поле), с кривой, полученной с помощью стандартного метода, эквивалентного DIC, на основе наборов виртуальных датчиков смещения, размещенных на разной высоте балки. Значения силы и прогиба при 20% и 80% пиковой нагрузки затем использовались для оценки модуля Юнга по трем кривым в соответствии с процедурой, предложенной в стандарте EN 843-2: 2006, Раздел 4.

    Кривые сила-прогиб изображенный на рис.7 (а) предполагают, что стандартный метод может быть чувствительным к выбору расположения виртуальных датчиков на поверхности луча, в частности, к тому, расположены ли виртуальные датчики рядом с внутренней или внешней дугой отклоняющего луча. Эта вариабельность результатов стандартного метода указывает на более низкую точность, поскольку в наших примерах он генерирует три значения модуля Юнга, которые отличаются более чем на 3%, с более низким значением, полученным в самых нижних положениях, которые аналогичны положения преобразователя указаны в стандарте EN 843-2: 2006, раздел 4.В вспомогательной ссылке на EN 843-2: 2006 22 отмечается, что стандартный метод квазистатического изгиба обычно дает более низкие значения, чем другие стандартные методы для керамических материалов. Вместо этого в предлагаемой методологии используются данные со всей поверхности луча, от внутренней до внешней дуги, что устраняет изменчивость из-за выбора местоположения виртуального преобразователя. Предлагаемая методология генерирует более высокий модуль упругости, чем те, которые определены виртуальными датчиками смещения (с использованием данных DIC) и применением стандартных методов расчета.Это говорит о том, что предлагаемая методология обеспечивает более высокую точность и может устранить потенциальное отклонение в сторону более низких значений, которое может быть наложено стандартным методом квазистатического изгиба.

    Рисунок 7

    ( a ) Сравнение кривых сила-прогиб, рассчитанных стандартным методом из трех наборов из трех точек данных (оранжевый, синий и красный) и с предложенной методологией на основе наилучшей интерполяции полной прогиб профиль (черный). ( b ) Подмножество данных, показанных в ( a ) с силой в процентах от пиковой нагрузки и ограничено диапазоном от 20% до 80%.Соответствующие линейные тренды (серые пунктирные линии), полученные из модуля Юнга, экстраполированного из двух кривых при 20% и 80% пиковой нагрузки, также нанесены на график для каждого набора. ( c ) Сравнение кривых "сила-деформация" двух виртуальных тензодатчиков и предложенной методики. Соответствующие линейные тренды (серые пунктирные линии), полученные из модуля Юнга, экстраполированного из трех кривых при 20% и 80% пиковой нагрузки, также представлены на графике.

    На рис.7 (b) сила была нормализована с пиковой нагрузкой, а диапазон данных был ограничен до 20–80% от пиковой нагрузки (в пределах диапазона 10–90%, указанного в EN 843-2: 2006). Также нанесены линии тренда, определенные стандартным методом анализа, который учитывает значения только в двух выбранных оператором оценочных точках (например, 20% и 80% пиковой нагрузки). Количественная оценка уровня точности может быть получена путем вычисления суммы квадратов остатков (SSR) между значениями, указанными линейным трендом, и фактическими данными отклонения, которые представляют собой отклонение измерения от значения, указанного этим трендом.Предлагаемая методология полного поля имеет более низкую SSR (таблица на рис. 7 (b), 4,28 против 5,51, 7,60 и 8,10 мкм 2 ) и, следовательно, более высокий уровень точности. Промежуточные модули Юнга из предложенной методологии также использовались для обратного расчета соответствующих значений горизонтальной деформации на нижней поверхности образца в середине пролета для каждого значения приложенной нагрузки. Сопоставимые значения горизонтальной деформации также были извлечены непосредственно из данных деформации ДИК в полном поле в двух дискретных точках чуть выше нижнего края наблюдаемой поверхности.Каждый из них был скорректирован до эквивалентного значения на нижней поверхности. Результирующие данные по силе-деформации (от 20% до 80% пиковой нагрузки) представлены на рис. 7 (с). Значения силы и деформации при 20% и 80% пиковой нагрузки затем использовались для оценки модуля Юнга, как предложено в EN 843-2: 2006, Раздел 4. Опять же, количественная оценка уровня точности также может быть получена из расчет SSR между значениями, указанными линейным трендом, и фактическими данными деформации. Предлагаемая методология, основанная на полнополевом ДИК, имеет SSR на два порядка меньше, чем полученные стандартным методом (таблица на рис.7 (c) 2,07 10 −8 против 1,44 10 −6 и 2,08 10 −6 ), и, следовательно, гораздо более высокий уровень точности.

    Это сравнение было выполнено для эксперимента, который был записан с использованием современного оборудования, и поэтому только изображения с высоким разрешением были проанализированы с использованием DIC. Разумно предположить, что повышение точности предлагаемой методологии будет более значительным для изображений с более низким разрешением, потому что был использован весь набор данных о деформации (поддержка для поддержки и по всей высоте), а не гораздо меньшие подмножества этих данных, представляющих всего несколько отдельных локаций.

    Лучшее руководство по определению прогиба в балках переменного поперечного сечения - опытный инженер

    Таблицы балок дают информацию и предполагают, что прогиб расчет основан на постоянном сечении. Итак, что нам делать, если у нашей балки есть крест сечение, которое меняется по длине балки?

    Чтобы определить величину отклонения в балка переменного сечения, необходимо интегрировать формулу прогиба балки с моментом инерции, являющимся переменной по отношению к длине и применить граничные условия.Луч Формула отклонения: v ’’ = M (x) / [E * I (x)].

    Непрерывный или дискретный - Есть два типа секций балки: непрерывная и дискретная. Большинство балок представляют собой непрерывных балок и имеют либо постоянное сечение, либо сечение, которое постепенно изменяется по длине балки. Кровельные балки в больших стальных зданиях - отличный пример непрерывной переменной балки. Балка относительно короткая на концах и очень высокая посередине.

    Дискретные балки балки которые имеют внезапные разрывы в разрезе.Вы не поверите, но иногда это проще для расчета, потому что дискретные участки обычно постоянны, что приводит к более легкий расчет.

    Формула отклонения балки является универсальной формула, которая позволяет настраивать несколько нагрузок и балку разделы. Предупреждаю, что чем больше чем точнее должны быть ваши расчеты, тем сложнее будет выполнить математику. Упрощение здесь сэкономит много времени и усилия. Как упоминалось ранее, формула:

    в ’’ = M (x) / [E * I (x)]

    Где v ’’ - вторая производная отклонения ( ускорение прогиба), M - момент, который обычно является функцией положение по длине балки, x. E - модуль упругости, I - момент инерции поверхности луч. Все табличные балки будут считайте это постоянной величиной, и поэтому ни одна из формул прогиба может быть использован.

    Теперь, когда мы проинтегрируем приведенное выше уравнение, мы будем выполнение неопределенного интеграла, что означает, что мы должны добавить константу, C n, к многочлену каждый раз, когда мы интегрируем. Поскольку мы будем интегрировать уравнение два раза, мы получим две константы. Если у нас есть дискретный В этом случае у нас будет два или более уравнений.

    Граничные условия - это требования, которым должна соответствовать формула прогиба балки, когда она находится в окончательном виде. Окончательная форма приходит только тогда, когда мы используем граничные условия для решения для констант образованный неопределенным интегралом. Общий случаи: концы балки с опорой должны быть равны 0 (дюймы, мм и т. д.) или наклон консольной балки должен быть 0 радиан.

    В этой статье мы рассмотрим три примера распространенных балок переменного сечения.

    1. Двухсекционная консольная балка с точечной нагрузкой на конце.
    2. Двухсекционная балка, свободно поддерживаемая собственным весом.
    3. Постоянно изменяющаяся непрерывная балка с простой опорой и постоянной распределенной нагрузкой.

    Лучшее руководство по минимизации отклонения луча

    Пример 1. Двухсекционная консольная балка с точечной нагрузкой на конце.

    Эта проблема состоит из 100-дюймового консольная стальная балка с нагрузкой 500 фунтов.4.

    Теперь мы определим момент и дважды проинтегрируем уравнение прогиба балки, каждый раз добавляя переменную для неопределенного интеграла. Я решил, что моя система координат (переменная x) начинается с основания. Это немного усложняет интегрирование, но переменные C 1 и C 2 будут уравновешиваться из-за граничных условий 1 и 2. Вы увидите через секунду.

    Мне нужно выполнить интегрирование только для одного из разделов, а затем изменить I 1 на I 2 в уравнениях.Я также сохранил переменную «v» как отклонение балки, но изменил первую производную отклонения на переменную «s», чтобы указать наклон. Я также указал переменные.

    Теперь, когда проблема определена, давайте установим граничные условия. Нам нужно, чтобы положение и наклон на фиксированном конце балки составляли 0 дюймов и 0 радиан. Также нам понадобятся еще два граничных условия на стыке сегментов. Наклон и положение в этом положении должны быть одинаковыми.

    Решим граничные условия 1 и 2

    Как упоминалось выше, я предвидел, что переменные C1 и C2 будет равно 0, когда я выберу, чтобы система координат начиналась с база.

    Далее мы рассмотрим граничные условия 3 и 4. Они немного сложнее.

    Обратите внимание на чек, который я поставил в блок Find, чтобы чтобы мы могли проверить, что v 1 = v 2 и s 1 = s 2 при 50 дюйм.Это подтверждает что положение и наклон в этой точке будут непрерывными.

    Следующим шагом является проверка результатов. Это делается в два этапа. Первый - построить каждый сегмент по всей длине. Мы ищем четыре граничных условия, которые должны быть выполнены. Как видите, линии пересекаются и касаются друг друга на расстоянии 50 дюймов. Кроме того, v 1 не имеет прогиба или наклона в основании.

    Наконец, мы объединим два графика вместе, образуя окончательное уравнение для отклонения нашей консольной балки.

    Как видите, отклонение быстро увеличивается после 50 дюймов от основания. Это четко указано на обоих графиках.

    4 лучших способа улучшить характеристики торсионной балки

    Пример 2: Двухсекционная стальная балка с простой опорой под собственным весом.

    Эта проблема состоит из стальной балки с простой опорой длиной 300 дюймов с распределенной нагрузкой 30 фунтов / дюйм на левом конце. На правом конце распределенная нагрузка составляет 50 фунтов.4.

    Теперь определим момент и проинтегрируем уравнение отклонения балки дважды каждый раз, добавляя переменную. Я выбрал две системы координат. Координата x идет слева направо и координата y идет справа налево. Их связывает:

    г = L-x

    Я выбрал эту систему координат так, чтобы C 2 и C 4 будет сокращаться, когда мы решаем граничные условия 1 и 2. Это также упрощает математику. чрезвычайно.Вы увидите через секунду.

    Мне нужно выполнить интегрирование только для одного из разделов, а затем изменить I 1 на I 2 и w 1 на w 2 в уравнениях. Для уравнений правого сечения я также заменю «y» на «x». Я также сохранил переменную «v» как отклонение балки, но изменил первую производную отклонения на переменную «s», чтобы указать наклон. Я также указал переменные.

    Теперь, когда проблема определена, давайте установим граничные условия.Нам нужно, чтобы концы балки были отклонены на 0 дюймов (BC 1 и 2). Также нам понадобятся еще два граничных условия на стыке сегментов. Наклон и положение в этой позиции должны быть такими же, как и в месте соединения сегментов.

    Решим граничные условия 1 и 2

    Как упоминалось выше, я предвидел, что переменные C 2 и C 4 будет равно 0, если я выберу координату система запускается на базе.

    Далее мы рассмотрим граничные условия 3 и 4. Они немного сложнее.

    Обратите внимание на чек, который я поставил в блок Find, чтобы чтобы мы могли проверить, что v 1 = v 2 и s 1 = s 2 при 200 дюйм. Это подтверждает что положение и наклон в этой точке будут непрерывными.

    Следующим шагом является проверка результатов. Это делается в два этапа. Первый - построить каждый сегмент по всей длине.Мы ищем четыре граничных условия, которые должны быть выполнены.

    Ой, что случилось !? Линии определенно пересекаются на расстоянии 200 дюймов, и каждый конец имеет 0 дюймов прогиб, но они не касаются на пересечении. Я не только показываю силу график решения для точности, но также демонстрируя, что с помощью двух разные системы координат создают проблему. Согласно уравнениям склоны приближаются к месту расположения стык на равном по величине нисходящем склоне.Однако сделать эту работу одной из склонов на самом деле нужно подойти. Мы можем исправьте эту проблему, внеся одно небольшое изменение.

    с 1 = -s 2

    Давайте внесем это изменение и приступим к решению.

    Да, намного лучше! Наконец, мы объединим два графика вместе, образуя окончательное уравнение для отклонения нашей консольной балки.

    Как и ожидалось, более длинная и жесткая секция меньше прогибается.

    Как рассчитать данные о пучке, когда вашего случая нет в таблице

    Пример 3: Постоянно изменяющаяся неразрезная балка с простой опорой и постоянной распределенной нагрузкой.

    Эта проблема состоит из стальной балки с простой опорой длиной 300 дюймов с распределенной нагрузкой 1000 фунтов / дюйм поперек балки. Сечение начинается на высоте 10 дюймов, линейно увеличивается к центру, где достигает высоты 24 дюйма. Затем он снова сужается до 10 дюймов.

    Чтобы определить, как момент инерции изменяется по отношению к x, мы будем моделировать в Solidworks и делать сечения каждые 30 дюймов. Мы сведем эти данные в таблицу и подгоним к ним линию.

    Вы, наверное, заметили, что я сделал таблицу только для значений от 0 до 150 дюймов. Это потому, что я собираюсь использовать симметрию, чтобы упростить эту сложную задачу. Мы можем использовать симметрию, потому что и нагрузка, и сечение балки симметричны относительно середины балки. Из-за симметрии нам нужно, чтобы конечная точка имела прогиб 0 дюймов, а наклон в середине балки был 0 градусов. Затем мы можем отразить это, чтобы получить непрерывное отклонение луча. В этом случае координата x будет идти слева направо.

    Здесь вы можете видеть, что вычисленные значения I (x) точно соответствуют тому, что указано в таблице выше. Я назвал вторую производную от положения «а1» (ускорение). Как видите, верхняя и нижняя части имеют переменную «x», и интегрировать это будет очень весело. Итак, вам нужно знать обо мне одну вещь. У меня есть ограничения относительно того, что я не буду делать. Интеграция - одна из таких вещей. Вот почему у нас есть MathCAD!

    Как видите, очень утомительная работа по интеграции была замалчена, и мы смогли напрямую решить для нашей границы условия.В уравнениях s (x) и v (x), на самом деле были натуральные бревна и каким-то образом появилась обратная касательная (не показано). Я до сих пор не жалею позволяя MathCAD делать всю работу.

    Следующим шагом является проверка результатов. Это делается в два этапа. Первый - построить каждый сегмент по всей длине. Мы ищем, чтобы наши граничные условия были выполнены. Как видите, отклонение при x = 0 дюймов составляет 0 дюймов, а наклон кажется плоским при x = 150 дюймов.

    Наконец, мы отразим графики вместе, образуя окончательное уравнение для отклонения нашей консольной балки.

    Как видите, отклонение составляет 0 дюймов в конечных точках и имеет максимальное отклонение в центре.

    Лучшее руководство по решению статически неопределимых балок

    Заключение

    В этой статье рассматриваются три популярных варианта нагружения, когда балка имеет переменное поперечное сечение. Хотя это действительно связано с исчислением, часто это очень легко сделать вручную, потому что это многочлены. Если нет, то будьте благодарны за такие надежные программы, как MathCAD, которые сделают это за вас.Эта статья должна дать вам хорошее представление о процедуре, используемой для анализа подобных балок. Если ваша балка не загружена именно так, вы всегда можете найти расчет момента в таблице и интегрировать свое сердце.

    Связанные

    Калькулятор консольной балки | calcresource

    Теоретические основы

    Содержание

    Введение

    Консольная балка - одна из самых простых конструкций. Он имеет только одну опору на одном из концов.Опора представляет собой так называемую фиксированную опору , которая запрещает все движения, включая вертикальные или горизонтальные смещения, а также любые вращения. Другой конец не имеет опоры, поэтому он может свободно перемещаться или вращаться. Этот свободный конец часто называют наконечником кантилевера.

    Консоль имеет только одну фиксированную опору.

    Удаление единственной опоры или установка внутреннего шарнира превратят консольную балку в механизм: тело движется без ограничений в одном или нескольких направлениях.Это нежелательная ситуация для несущей конструкции. В результате консольная балка не обеспечивает избыточности с точки зрения опор. Если произойдет локальный сбой, вся конструкция рухнет. Эти типы структур, которые не предлагают избыточности, называются критическими или детерминантными структурами. Напротив, конструкция, которая имеет больше опор, чем требуется для ограничения ее свободного движения, называется избыточной или неопределенной конструкцией .Консольная балка - определяющая конструкция.

    Допущения

    Статический анализ любой несущей конструкции включает оценку ее внутренних сил и моментов, а также ее прогибов. Обычно для плоской конструкции с плоской нагрузкой интересующими внутренними воздействиями являются осевая сила N, поперечная поперечная сила V и изгибающий момент M. Для консольной балки, которая несет только поперечные нагрузки, осевая сила всегда равна нулю. при условии небольших прогибов.Поэтому осевыми силами часто пренебрегают.

    Результаты расчетов на этой странице основаны на следующих предположениях:

    • Материал однороден и изотропен (другими словами, его характеристики одинаковы во всех точках и в любом направлении)
    • Материал линейно эластичный
    • Нагрузки прикладываются статически (они не меняются со временем)
    • Поперечное сечение одинаково по всей длине балки
    • Прогибы небольшие
    • Каждое поперечное сечение, которое изначально является плоским, а также перпендикулярно продольному ось, остается плоской и перпендикулярной отклоненной оси.Это тот случай, когда высота поперечного сечения значительно меньше длины балки (в 10 и более раз), а также поперечное сечение не является многослойным (не сечение сэндвич-типа).

    Последние два предположения удовлетворяют кинематическим требованиям теории пучка Эйлера-Бернулли, которая здесь также принята.

    Условные обозначения

    Для расчета внутренних сил и моментов при любом разрезе сечения балки необходимо условное обозначение. Здесь приняты следующие значения:

    1. Осевая сила считается положительной, когда она вызывает натяжение детали.
    2. Сдвигающая сила положительна, когда она вызывает вращение детали по часовой стрелке.
    3. Изгибающий момент является положительным, когда он вызывает растяжение нижнего волокна балки и сжатие верхнего волокна.

    Эти правила, хотя и не являются обязательными, но достаточно универсальны. Другой набор правил, если следовать ему последовательно, также даст те же физические результаты.

    Положительный знак для внутренней осевой силы, N, поперечной силы, V и изгибающего момента, M
    Обозначения
    • E: модуль упругости материала (модуль Юнга)
    • I: момент инерции поперечного сечения вокруг упругой нейтральной оси изгиба
    • L: общая длина балки
    • R: реакция опоры
    • d: прогиб
    • M: изгибающий момент
    • V: поперечная поперечная сила
    • \ theta: наклон

    Консольная балка с равномерно распределенной нагрузкой

    Нагрузка w распределена по пролету консоли, имея постоянную величину и направление. 2)} {6 EI}

    Консольная балка с точечной силой на конце

    Сила сосредоточена в одной точке, расположенной на свободном конце балки.Однако на практике сила может распространяться на небольшую площадь, хотя размеры этой области должны быть существенно меньше, чем длина кантилевера. В непосредственной близости от приложения силы ожидаются концентрации напряжений, и в результате отклик, предсказываемый классической теорией балки, может быть неточным. Однако это только местное явление. По мере удаления от места расположения силы результаты становятся действительными в силу принципа Сен-Венана.

    В следующей таблице содержатся формулы, описывающие статический отклик балки кантилевера под действием сосредоточенной силы P, приложенной к наконечнику.2 (3L-x)} {6EI} Уклон в точке x: \ theta (x) = - \ frac {Px (2L - x)} {2EI}

    Консольная балка с точечной силой в произвольном месте

    Сила сосредоточена в одной точке в любом месте по длине консоли. Однако на практике сила может распространяться на небольшую площадь. Однако, чтобы считать силу сосредоточенной, размеры области приложения должны быть существенно меньше длины балки. В непосредственной близости от силы ожидаются концентрации напряжений, и в результате отклик, предсказываемый классической теорией балки, может быть неточным.Однако это только локальное явление, и по мере удаления от места расположения силы расхождение результатов становится незначительным.

    В следующей таблице приведены формулы, описывающие статический отклик консольной балки под действием сосредоточенной точечной силы P, приложенной на случайном расстоянии a от неподвижной опоры.

    Консольная балка с точечной нагрузкой в ​​произвольном положении
    Количество Формула
    Реакции:

    R_A = P

    03

    R_A = P

    03 9 -0002a 906 9 -0002a 906 :

    \ theta_A = 0

    \ theta_B = - {Pa ^ 2 \ over 2EI}

    Предельный изгибающий момент: M_u = -Pa
    Предельное усилие сдвига P620: 906u21
    Предельное отклонение: d_u = {Pa ^ 2 (3L-a) \ over 6EI}
    Изгибающий момент в x: M (x) = \ left \ {\ begin {align} - & P (ax) &, x \ le a \\ & 0 &, x> a \ end {align} \ right.2 (3x - a) \ over 6EI} &, x> a \ end {align} \ right.
    Наклон в точке x: \ theta (x) = \ left \ {\ begin {align} - & {Px (2a - x) \ over 2EI} &, x \ le a \\ & \ theta_B & , x> a \ end {выровнено} \ right.

    Консольная балка с точечным моментом

    В этом случае момент прикладывается к одной точке балки, в любом месте пролета. С практической точки зрения, это может быть пара сил или элемент на кручение, соединенный из плоскости и перпендикулярно балке.

    В любом случае область приложения момента должна распространяться на небольшую длину консоли, чтобы ее можно было успешно идеализировать как сосредоточенный момент в точке. Хотя в непосредственной близости от области применения ожидается, что результаты, предсказанные с помощью классической теории пучка, будут неточными (из-за концентраций напряжений и других локализованных эффектов), предсказанные результаты становятся совершенно достоверными, когда мы удаляемся, как заявил Св. -Венантный принцип.

    Следующая таблица содержит формулы, описывающие статический отклик консольной балки под действием сосредоточенного момента M точки, приложенного на расстоянии a от неподвижной опоры.

    Консольная балка с точечным моментом
    Количество Формула
    Реакции:

    R_A = 0

    103 906 906 906 906

    103 906 Наклоны M_ \ theta_A = 0

    \ theta_B = \ frac {M a} {EI}

    Предельный изгибающий момент: M_u = M
    Предельное усилие сдвига: V_u10 Ultimate прогиб: d_u = - {Ma (2L-a) \ over 2EI}
    Изгибающий момент в точке x: M (x) = \ left \ {\ begin {align} & M &, x \ le a \\ & 0 &, x> a \ end {align} \ right.2} {2 E I} &, x \ le a \\ & - \ theta_B \ left (x- {a \ over2} \ right) &, x> a \ end {align} \ right.
    Наклон в точке x: \ theta (x) = \ left \ {\ begin {align} & \ frac {M x} {EI} &, x \ le a \\ & \ theta_B &, x> а \ конец {выровнено} \ право.

    Консольная балка с переменной распределенной нагрузкой

    Нагрузка распределяется по длине консоли с линейно изменяющейся величиной, начиная с w_1 на неподвижной опоре и заканчивая w_2 на свободном конце.Размеры w_1 и w_2 - сила на длину. Общее количество силы, приложенной к балке, равно W = {L \ over2} (w_1 + w_2), где L - длина консоли.

    Значения w_1 и w_2 могут быть присвоены произвольно. Первое не обязательно должно быть меньше второго. Они могут принимать даже отрицательные значения (одно или оба).

    Если w_1 = 0, формулы в следующей таблице соответствуют треугольной распределенной нагрузке с возрастающей величиной (пик на вершине).

    Если w_2 = 0, формулы в следующей таблице соответствуют треугольной распределенной нагрузке с уменьшающейся величиной (пик на неподвижной опоре).3} {24EI}

    где:

    w_x = w_1 + {(w_2-w_1) \ over L} x

    Консольная балка с трапециевидным распределением нагрузки плитного типа

    Такое распределение нагрузки является типичным для консольных балок, поддерживающих плиту. 2 &, x> a \ end {align} \ right.3} {6EI} &, x> a \ end {align} \ right.

    Консольная балка с частично распределенной равномерной нагрузкой

    Нагрузка распределяется на часть длины консоли с постоянной величиной w, в то время как оставшаяся длина не нагружается. Размеры w - сила на длину. Общее количество силы, приложенной к балке, равно W = w \ left (L-a-b \ right), где L - длина консоли, а a, b - длины без нагрузки с левой и правой стороны балки, соответственно.

    В следующей таблице приведены формулы, описывающие статический отклик консольной балки при частично распределенной равномерной нагрузке.

    Консольная балка с частично распределенной равномерной нагрузкой
    Кол-во Формула
    Реакции:

    R_A = wL_w \ L =

    - слева 2} \ right)

    Концевые уклоны:

    \ theta_A = 0

    \ theta_B = - \ frac {w (L_b ^ 3- a ^ 3)} {6 EI}

    Ultimate изгибающий момент: M_u = M_A
    Предельная сила сдвига: V_u = V_A
    Предельный прогиб: d_u = \ frac {w \ left (3L ^ 4 - 8L ^ 3 b + 6L 2 b ^ 2 - 4L a ^ 3 + a ^ 4 - b ^ 4 \ right)} {24 EI}
    Изгибающий момент в точке x: M (x) = \ left \ {\ begin {align} & R_A x + M_A &, x \ le a \\ & R_Ax + M_A- \ frac {w x_a ^ 2} {2} &, a {<} x {<} Lb \\ & 0 &, x \ ge Lb \ end { выровнено} \ вправо.3} {6EI} &, a {<} x {<} L-b \\ & \ theta_B &, x \ ge L-b \ end {align} \ right.

    где:

    x_a = xa

    L_w = Lab

    L_b = Lb

    Консольная балка с частично распределенной трапециевидной нагрузкой

    Нагрузка распределяется на консольную часть длины линейно меняющаяся величина от w_1 до w_2, а оставшаяся длина не загружается. Размеры w_1 и w_2 - сила на длину.Общее количество силы, приложенной к балке, равно W = {L-a-b \ over2} (w_1 + w_2), где L - длина балки, а a, b - длины без нагрузки с левой и правой стороны балки соответственно.

    Значения w_1 и w_2 могут быть присвоены произвольно. Первое не обязательно должно быть меньше второго. Они могут принимать даже отрицательные значения (одно или оба).

    Это самый общий случай. Формулы для частично распределенных равномерных и треугольных нагрузок можно получить, соответствующим образом задав значения w_1 и w_2.Кроме того, соответствующие случаи для полностью нагруженного пролета можно получить, установив a и b равными нулю. 2} {6} &, a {<} x {<} Lb \\ & 0 &, x \ ge Lb \ end {align} \ right.3} {24EI} &, a {<} x {<} L-b \\ & \ theta_B &, x \ ge L-b \ end {align} \ right.

    где:

    x_a = xa

    L_w = Lab

    L_1 = L + ab

    L_b = Lb
    w_ {m} = {w_1 + w_2 \ over2}

    w_x = w_1 -w_1) \ over L_w} (xa)

    Статьи по теме

    Понравилась эта страница? Поделись с друзьями!

    Бесплатный калькулятор луча | ClearCalcs

    Как использовать бесплатный калькулятор балки

    Калькулятор балки ClearCalcs позволяет пользователю ввести геометрию и загрузку балки для анализа за несколько простых шагов.Затем он определяет изгибающий момент, диаграммы сдвига и прогиба, а также максимальные требования, используя мощный механизм анализа методом конечных элементов.

    Регистрация учетной записи ClearCalcs откроет дополнительные расширенные функции для проектирования и анализа балок и множества других структурных элементов. ClearCalcs позволяет проектировать из стали, бетона и дерева в соответствии со стандартами Австралии, США и ЕС.

    Лист разделен на три основных раздела:

    1. «Ключевые свойства», где пользователь вводит геометрию выбранного сечения и опор балки.
    2. «Нагрузки», где можно вводить распределенные, точечные и приложенные моментные нагрузки,
    3. «Сводка», в котором отображаются основные выходные данные и диаграммы.

    Раздел «Комментарии» также включен, чтобы пользователь мог оставлять какие-либо особые примечания по дизайну. Щелчок по любой из меток ввода / свойства дает описательное справочное объяснение.

    1. Свойства входного ключа

    Свойства балки и сечения задаются путем ввода непосредственно в поля ввода.

    Длина балки - это общая длина балки, включая все пролеты балки, в мм или футах.

    Модуль Юнга установлен на значение по умолчанию 200 000 МПа или 29 000 фунтов на квадратный дюйм для конструкционной стали, но может быть изменен пользователем.

    Площадь поперечного сечения зависит от выбранного сечения балки и по умолчанию имеет значения для обычной стальной балки.

    Второй момент области (или момент инерции) также зависит от выбранного сечения балки и снова по умолчанию соответствует свойствам обычной стальной балки.

    Свойства E, A и Ix для других секций балки можно получить из библиотеки свойств секций ClearCalcs.Кроме того, вы можете создать свой собственный раздел, используя наш бесплатный калькулятор момента инерции.

    Положение опор слева позволяет пользователю вводить любое количество опор и указывать их положение по длине балки. Тип опоры может быть закрепленным (фиксированный в перемещении, свободном вращении) или фиксированным (фиксированный как при перемещении, так и при повороте) и выбирается из раскрывающегося меню. Требуется минимум одна фиксированная опора или две штифтовые опоры.

    Вычислитель балок также учитывает пролет консолей на каждом конце, поскольку положение первой опоры не обязательно должно быть равно 0 мм, а положение последней опоры не обязательно должно быть равно длине балки.

    Реакции на каждой из опор автоматически обновляются по мере добавления, изменения или удаления опор в зависимости от указанной нагрузки.

    2. Входные нагрузки

    Калькулятор поддерживает различные типы нагрузок, которые можно применять в комбинации. Каждой загрузке может быть присвоено имя пользователем.

    Знаковое обозначение, используемое для нагружения (показаны положительные значения):

    Распределенные нагрузки указываются в единицах силы на единицу длины, кН / м или плс, вдоль балки и могут применяться между любыми двумя точками.В калькуляторе можно использовать два разных типа:

    Равномерная нагрузка имеет постоянную величину по всей длине приложения. Следовательно, начальная и конечная величины, указанные пользователем, должны быть одинаковыми.

    Линейные нагрузки имеют переменную величину по длине приложения. Различные начальные и конечные величины должны быть указаны пользователем, и они могут использоваться для представления треугольных или трапециевидных нагрузок.

    Точечные нагрузки указываются в единицах силы, кН или тысячах фунтов, и площади, приложенной в дискретных точках вдоль балки.Например, они могут представлять реакции других элементов, соединенных с балкой. Пользователь вводит имя, величину и местоположение слева от луча.

    В приведенном ниже примере диаграммы из сводного раздела показана двухпролетная неразрезная балка с линейно распределенной нагрузкой на заплату и точечной нагрузкой.

    3. Выходные данные сводки вычислений

    После задания нагрузки и геометрии калькулятор автоматически использует механизм конечно-элементного анализа ClearCalcs для определения моментов, поперечных сил и прогибов.Максимальные значения каждого выводятся как «Требование момента» , «Требование сдвига» и «Прогиб» вместе с диаграммами по длине балки.

    Положительные значения означают отклонение вниз, а отрицательные значения - отклонение вверх. Знаковое соглашение, используемое на диаграммах поперечной силы и изгибающего момента (показаны положительные значения):

    Использование курсора для наведения курсора на любую точку на диаграммах изгибающего момента, поперечной силы или прогиба дает конкретные значения в этом месте вдоль балки.В приведенном ниже примере показаны выходные параметры для двухпролетной неразрезной балки с линейно распределенной коммутационной нагрузкой и точечной нагрузкой.

    Калькулятор прогиба балки

    КАЛЬКУЛЯТОРЫ КОМПРЕССИОННЫХ УЧАСТНИКОВ
    Калькулятор Определение
    Расчет элементов сжатия (продольного изгиба колонны)
    ПРОСТО ОПОРНАЯ БАЛКА КАЛЬКУЛЯТОРЫ ПРОГНОЗА
    Балка с простой опорой и множественными точечными / распределенными нагрузками и моментами
    Балка с простой опорой и сосредоточенной нагрузкой в ​​любой точке
    Просто поддерживаемая балка с двумя Точечные нагрузки
    Балка с простой опорой и частично распределенной промежуточной нагрузкой
    Балка с простой опорой и двумя частично распределенными промежуточными нагрузками
    Балка с простой опорой и моментом
    Балка с простой опорой и двумя моментами
    КАНТИЛЬВЕРНАЯ БАЛКА КАЛЬКУЛЯТОРЫ ПРОБЕГА
    Консольная балка с множественными точечными / распределенными нагрузками и моментами
    Консольная балка с одинарной нагрузкой
    Распределенная нагрузка консольной балки
    Консольная балка с одним моментом
    КАЛЬКУЛЯТОРЫ ПРОГИБА ФИКСИРОВАННОЙ ЛУЧИ
    Фиксированный -Фиксированная балка с множественными точечными / распределенными нагрузками и моментами
    Фиксированная - фиксированная балка с одинарной нагрузкой
    Фиксированный - Неподвижная балка с распределенной нагрузкой
    Фиксированная - фиксированная балка с одним моментом
    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *