Содержание

Как сделать ровный 6 угольник. Правильный шестиугольник построение

Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 -6, 4-3, 4-5 и 7-2, после чего прово­дим стороны 5-6 и 3-2.

Построение вписанного в окружность равностороннего треуголь­ника . Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0-1-2 равен 30°, то для нахождения стороны

1-2 достаточно построить по точке 1 и стороне 0-1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1-2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2-3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вер­шины через одну, то получится равносторонний треугольник.

Для построения треугольника (фиг. 61, б) намечаем на диаметре вершину-точку 1 и проводим диаметральную линию 1-4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окруж­ностью в точках 3 и 2. Полученные точки будут двумя другими вер­шинами искомого треугольника.

Построение квадрата, вписанного в окружность . Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пере­секаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные сто­роны квадрата 4-1 и 3-2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1-2 и 4-3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра (фиг. 62, б). Намечаем на концах двух взаимно перпендикулярных диа­метров точки А, В и С и из них радиусом у описываем дуги до вза­имного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные пря­мые, отмеченные на фигуре сплошными линиями. Точки их пересече­ния с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник (фиг. 63), про­изводим следующие построения.

Намечаем на окружности точку 1 и принимаем её за одну из вер­шин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точ­ках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вер­шины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую.

Получим точку 1-вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведён­ными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиу­сом, равным диаметру окружности D, описываем дугу до пересечения с про­должением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, прово­дим из полюса F через чётные деления вертикального диаметра лучи, пересече­ние которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем после­довательно между собой. Семиугольник может быть построен путём проведе­ния лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоуголь­ников с любым числом сторон.

Деление окружности на любое число равных частей можно произ­водить также, пользуясь данными табл. 2, в которой приведены коэф­фициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

Правильный описанный треугольник строят следующим образом

(рисунок 38). Из центра заданной окружности радиуса R 1 проводят окружность радиусом R 2 = 2R 1 и делят ее на три равные части. Точки деления А, В, С являются вершинами правильного треугольника, описанного около окружности радиуса R 1 .

Рисунок 38

Правильный описанный четырехугольник (квадрат) можно построить с помощью циркуля и линейки (рисунок 39). В заданной окружности проводят два взаимно перпендикулярных диаметра. Приняв точки пересечения диаметров с окружностью за центры, радиусом окружности R описывают дуги до взаимного их пересечения в точках А, В, С,D . Точки A , B , C , D и являются вершинами квадрата, описанного около данной окружности.

Рисунок 39

Для построения правильного описанного шестиугольника необходимо вначале построить вершины описанного квадрата указанным выше способом (рисунок 40, а). Одновременно с определением вершин квадрата заданную окружность радиуса

R делят на шесть равных частей в точках 1, 2, 3, 4, 5, 6 и проводят вертикальные стороны квадрата. Проведя через точки деления окружности 2–5 и 3–6 прямые до пересечения их с вертикальными сторонами квадрата (рисунок 40, б), получают вершины А, В, D, Е описанного правильного шестиугольника.

Рисунок 40

Остальные вершины C и F определяют с помощью дуги окружности радиуса OA , которая проводится до пересечения ее с продолжением вертикального диаметра заданной окружности.
3 СОПРЯЖЕНИЯ

Геометрические узоры весьма популярны в последнее время. В сегодняшнем уроке мы научимся создавать один из таких узоров. Используя переход, оформление и модные цвета мы создадим паттерн, который вы сможете использовать в веб и полиграфическом дизайне.

Результат

Шаг 2
Нарисуйте еще один шестиугольник, на этот раз меньше — выберите радиус в 20pt .

2. Переход между шестиугольниками

Шаг 1
Выделите оба шестиугольника и выровняйте их по центру (вертикально и горизонтально). Используя инструмент Blend/Переход (W) , выделите оба шестиугольника и укажите им переход в 6 шагов (Steps) . Чтобы было лучше видно, измените перед переходом цвет фигур.

3. Делим на секции

Шаг 1
Инструментом Line Segment/Отрезок линии (\) нарисуйте линию, пересекающую шестиугольники по центру от самого левого угла к самому правому. Нарисуйте еще две линии, пересекающие шестиугольники по центру от противоположных углов.

4. Закрашиваем секции

Шаг 1
Перед тем как начать закрашивать секции, давайте определимся с палитрой. Вот какова палитра из примера:

  • Синий: C 65 M 23 Y 35 K 0
  • Бежевый: C 13 M 13 Y 30 K
    0
  • Персиковый: C 0 M 32 Y 54 K 0
  • Светло-розовый: C 0 M 64 Y 42 K 0
  • Темно-розовый: C 30 M 79 Y 36 K 4

В примере сразу использовался режим CMYK, чтобы можно было распечатать узор без изменений.

5. Последние штрихи и узор

Шаг 1
Сгруппируйте (Control-G) все секции и шестиугольники, после того как закончите с их окраской. Копируйте (Control-C) и Вставьте (Control-V) группу из шестиугольников. Назовем оригинальную группу Hexagon A, а ее копию Hexagon B . Выровняйте группы.


Шаг 2
Примените Linear Gradient/Линейный градиент к группе Hexagon B. В палитре Gradient/Градиент укажите заливку от фиолетового (C60 M86 Y45 K42 ) к кремовому цвету (C0 M13 Y57 K0 ).

Сетки из шестиугольников (гексагональные сетки) используются в некоторых играх, но они не так просты и распространены, как сетки прямоугольников. Я коллекционирую ресурсы о сетках шестиугольников уже почти 20 лет, и написал это руководство по самым элегантным подходам, реализуемым в простейшем коде. В статье часто используются руководства Чарльза Фу (Charles Fu) и Кларка Вербрюгге (Clark Verbrugge). Я опишу различные способы создания сеток шестиугольников, их взаимосвязь, а также самые общие алгоритмы. Многие части этой статьи интерактивны: выбор типа сетки изменяет соответствующие схемы, код и тексты.

(Прим. пер.: это относится только к оригиналу, советую его изучить. В переводе вся информация оригинала сохранена, но без интерактивности.) .

Примеры кода в статье написаны псевдокодом, так их легче читать и понимать, чтобы написать свою реализацию.

Геометрия

Шестиугольники — это шестигранные многоугольники. У правильных шестиугольников все стороны (грани) имеют одинаковую длину. Мы будем работать только с правильными шестиугольниками. Обычно в сетках шестиугольников используются горизонтальная (с острым верхом) и вертикальная (с плоским верхом) ориентации.


Шестиугольники с плоским (слева) и острым (справа) верхом

У шестиугольников по 6 граней. Каждая грань общая для двух шестиугольников. У шестиугольников по 6 угловых точек. Каждая угловая точка общая для трёх шестиугольников. Подробнее о центрах, гранях и угловых точках можно прочитать в моей статье о частях сеток (квадратах, шестиугольниках и треугольниках).

Углы

В правильном шестиугольнике внутренние углы равны 120°. Есть шесть «клиньев», каждый из которых является равносторонним треугольником с внутренними углами 60°. Угловая точка i находится на расстоянии (60° * i) + 30° , на size единиц от центра center . В коде:

Function hex_corner(center, size, i): var angle_deg = 60 * i + 30 var angle_rad = PI / 180 * angle_deg return Point(center.x + size * cos(angle_rad), center.y + size * sin(angle_rad))
Для заполнения шестиугольника нужно получить вершины многоугольника с hex_corner(…, 0) по hex_corner(…, 5) . Для отрисовки контура шестиугольника нужно использовать эти вершины, а затем нарисовать линию снова в hex_corner(…, 0) .

Разница между двумя ориентациями в том, что x и y меняются местами, что приводит к изменению углов: углы шестиугольников с плоским верхом равны 0°, 60°, 120°, 180°, 240°, 300°, а с острым верхом — 30°, 90°, 150°, 210°, 270°, 330°.


Углы шестиугольников с плоским и острым верхом

Размер и расположение

Теперь мы хотим расположить несколько шестиугольников вместе. В горизонтальной ориентации высота шестиугольника height = size * 2 . Вертикальное расстояние между соседними шестиугольниками vert = height * 3/4 .

Ширина шестиугольника width = sqrt(3)/2 * height . Горизонтальное расстояние между соседними шестиугольниками horiz = width .

В некоторых играх для шестиугольников используется пиксель-арт, который не точно соответствует правильным шестиугольникам. Формулы углов и расположений, описанные в этом разделе, не будут совпадать с размерами таких шестиугольников. Остальная часть статьи, описывающая алгоритмы сеток шестиугольников, применима даже если шестиугольники немного растянуты или сжаты.


Системы координат

Давайте приступим к сборке шестиугольников в сетку. В случае сеток квадратов существует только один очевидный способ сборки. Для шестиугольников же есть множество подходов. Я рекомендую использовать в качестве первичного представления кубические координаты. Осевые координаты или координаты смещений следует использовать для хранения карт и отображения координат для пользователя.

Координаты смещений

Наиболее частый подход — смещение каждого последующего столбца или строки. Столбцы обозначаются col или q . Строки обозначаются row или r . Можно смещать нечётные или чётные столбцы/строки, поэтому у горизонтальных и вертикальных шестиугольников есть по два варианта.


Горизонтальное расположение «нечет-r»


Горизонтальное расположение «чёт-r»


Вертикальное расположение «нечет-q»


Вертикальное расположение «чёт-q»

Кубические координаты

Ещё один способ рассмотрения сеток шестиугольников — видеть в них три основные оси, а не две , как в сетках квадратов. В них проявляется элегантная симметрия.

Возьмём сетку кубов и вырежем диагональную плоскость в x + y + z = 0 . Это странная мысль, но она поможет нам упростить алгоритмы сеток шестиугольников. В частности, мы сможем воспользоваться стандартными операциями из декартовых координат: суммированием и вычитанием координат, умножением и делением на скалярную величину, а также расстояниями.

Заметьте три основные оси на сетке кубов и их соотношение с шестью диагональными направлениями сетки шестиугольников. Диагональные оси сетки соответствуют основному направлению сетки шестиугольников.


Шестиугольники


Кубы

Поскольку у нас уже есть алгоритмы для сеток квадратов и кубов, использование кубических координат позволяет нам адаптировать эти алгоритмы под сетки шестиугольников. я буду использовать эту систему для большинства алгоритмов статьи. Для использования алгоритмов с другой системой координат я преобразую кубические координаты, выполню алгоритм, а затем преобразую их обратно.

Изучите, как кубические координаты работают для сетки шестиугольников. При выборе шестиугольников выделяются кубические координаты, соответствующие трём осям.

  1. Каждое направление сетки кубов соответствует линии на сетке шестиугольников. Попробуйте выделить шестиугольник с z , равным 0, 1, 2, 3, чтобы увидеть связь. Строка отмечена синим. Попробуйте то же самое для x (зелёный) и y (сиреневый).
  2. Каждое направление сетки шестиугольника — это сочетание двух направлений сетки кубов. Например, «север» сетки шестиугольников лежит между +y и -z , поэтому каждый шаг на «север» увеличивает y на 1 и уменьшает z на 1.
Кубические координаты — разумный выбор для системы координат сетки шестиугольников. Условием является x + y + z = 0 , поэтому в алгоритмах оно должно сохраняться. Условие также гарантирует, что для каждого шестиугольника всегда будет каноническая координата.

Существует множество различных систем координат для кубов и шестиугольников. В некоторых из них условие отличается от x + y + z = 0 . Я показал только одну из множества систем. Можно также создать кубические координаты с x-y , y-z , z-x , у которых будет свой набор интересных свойств, но я не буду их здесь рассматривать.

Но вы можете возразить, что не хотите хранить 3 числа для координат, потому что не знаете, как хранить карту в таком виде.

Осевые координаты

Осевая система координат, иногда называемая «трапецеидальной», строится на основе двух или трёх координат из кубической системы координат. Поскольку у нас есть условие x + y + z = 0 , третья координата не нужна. Осевые координаты полезны для хранения карт и отображения координат пользователю. Как и в случае с кубическими координатами, с ними можно использовать стандартные операции суммирования, вычитания, умножения и деления декартовых координат.

Существует множество кубических систем координат и множество осевых. В этом руководстве я не буду рассматривать все сочетания. Я выберу две переменные, q (столбец) и r (строка). В схемах этой статьи q соответствует x , а r соответствует z , но такое соответствие произвольно, потому что можно вращать и поворачивать схемы, получая различные соответствия.

Преимущество этой системы перед сетками смещений в большей понятности алгоритмов. Недостатком системы является то, что хранение прямоугольной карты выполняется немного странно; см. раздел о сохранении карт. Некоторые алгоритмы ещё понятнее в кубических координатах, но поскольку у нас есть условие x + y + z = 0 , мы можем вычислить третью подразумеваемую координату и использовать её в этих алгоритмах. В своих проектах я называю оси q , r , s , поэтому условие выглядит как q + r + s = 0 , и я, когда нужно, могу вычислить s = -q — r .

Оси
Координаты смещения — это первое, о чём думает большинство людей, потому что они совпадают со стандартными декартовыми координатами, используемыми для сеток квадратов. К сожалению, одна из двух осей должна проходить «против шерсти», и это в результате всё усложняет. Кубическая и осевая система идут «по шерсти» и у них более простые алгоритмы, но хранение карт немного более сложное. Существует ещё одна система, называемая «чередуемой» или «двойной», но здесь мы не будем её рассматривать; некоторые считают, что с ней проще работать, чем с кубической или осевой.


Координаты смещения, кубические и осевые

Ось — это направление, в котором соответствующая координата увеличивается. Перпендикуляр к оси — это линия, на которой координата остаётся постоянной. На схемах сеток выше показаны линии перпендикуляров.

Преобразование координат

Вероятно, что вы будете использовать в своём проекте осевые координаты или координаты смещения, но многие алгоритмы проще выражаются в кубических координатах. Поэтому нам нужно уметь преобразовывать координаты между системами.

Осевые координаты близко связаны с кубическими, поэтому преобразование делается просто:

# преобразование кубических в осевые координаты q = x r = z # преобразование осевых в кубические координаты x = q z = r y = -x-z
В коде эти две функции могут быть записаны следующим образом:

Function cube_to_hex(h): # осевая var q = h.x var r = h.z return Hex(q, r) function hex_to_cube(h): # кубическая var x = h.q var z = h.r var y = -x-z return Cube(x, y, z)
Координаты смещения совсем немного сложнее:

Соседние шестиугольники

Дан один шестиугольник, с какими шестью шестиугольниками он находится рядом? Как и можно ожидать, легче всего дать ответ в кубических координатах, довольно просто в осевых координатах, и немного сложнее в координатах смещения. Также может потребоваться рассчитать шесть «диагональных» шестиугольников.

Кубические координаты

Перемещение на одно пространство в координатах шестиугольников приводит к изменению одной из трёх кубических координат на +1 и другой на -1 (сумма должна оставаться равной 0). На +1 могут изменяться три возможных координаты, а на -1 — оставшиеся две. Это даёт нам шесть возможных изменений. Каждое соответствует одному из направлений шестиугольника. Простейший и быстрейший способ — предварительно вычислить изменения и поместить их в таблицу кубических координат Cube(dx, dy, dz) во время компиляции:

Var directions = [ Cube(+1, -1, 0), Cube(+1, 0, -1), Cube(0, +1, -1), Cube(-1, +1, 0), Cube(-1, 0, +1), Cube(0, -1, +1) ] function cube_direction(direction): return directions function cube_neighbor(hex, direction): return cube_add(hex, cube_direction(direction))

Осевые координаты

Как и раньше, мы используем для начала кубическую систему. Возьмём таблицу Cube(dx, dy, dz) и преобразуем в таблицу Hex(dq, dr) :

Var directions = [ Hex(+1, 0), Hex(+1, -1), Hex(0, -1), Hex(-1, 0), Hex(-1, +1), Hex(0, +1) ] function hex_direction(direction): return directions function hex_neighbor(hex, direction): var dir = hex_direction(direction) return Hex(hex.q + dir.q, hex.r + dir.r)

Координаты смещения

В осевых координатах мы вносим изменения в зависимости от того, в каком месте сетки находимся. Если мы в столбце/строке смещения, то правило отличается от случая столбца/строки без смещения.

Как и раньше, мы создаём таблицу чисел, которые нужно прибавить к col and row . Однако на этот раз у нас будет два массива, один для нечётных столбцов/строк, а другой — для чётных. Посмотрите на (1,1) на рисунке карты сетки выше и заметьте, как меняются col и row меняются при перемещении в каждом из шести направлений. Теперь повторим процесс для (2,2) . Таблицы и код будут разными для каждого из четырёх типов сеток смещений, приводим соответствующий код для каждого типа сетки.

Нечет-r
var directions = [ [ Hex(+1, 0), Hex(0, -1), Hex(-1, -1), Hex(-1, 0), Hex(-1, +1), Hex(0, +1) ], [ Hex(+1, 0), Hex(+1, -1), Hex(0, -1), Hex(-1, 0), Hex(0, +1), Hex(+1, +1) ] ] function offset_neighbor(hex, direction): var parity = hex.row & 1 var dir = directions return Hex(hex.col + dir.col, hex.row + dir.row)


Чёт-r
var directions = [ [ Hex(+1, 0), Hex(+1, -1), Hex(0, -1), Hex(-1, 0), Hex(0, +1), Hex(+1, +1) ], [ Hex(+1, 0), Hex(0, -1), Hex(-1, -1), Hex(-1, 0), Hex(-1, +1), Hex(0, +1) ] ] function offset_neighbor(hex, direction): var parity = hex.row & 1 var dir = directions return Hex(hex.col + dir.col, hex.row + dir.row)


Сетка для чётной (EVEN) и нечётной (ODD) строк

Нечет-q
var directions = [ [ Hex(+1, 0), Hex(+1, -1), Hex(0, -1), Hex(-1, -1), Hex(-1, 0), Hex(0, +1) ], [ Hex(+1, +1), Hex(+1, 0), Hex(0, -1), Hex(-1, 0), Hex(-1, +1), Hex(0, +1) ] ] function offset_neighbor(hex, direction): var parity = hex.col & 1 var dir = directions return Hex(hex.col + dir.col, hex.row + dir.row)


Чёт-q
var directions = [ [ Hex(+1, +1), Hex(+1, 0), Hex(0, -1), Hex(-1, 0), Hex(-1, +1), Hex(0, +1) ], [ Hex(+1, 0), Hex(+1, -1), Hex(0, -1), Hex(-1, -1), Hex(-1, 0), Hex(0, +1) ] ] function offset_neighbor(hex, direction): var parity = hex.col & 1 var dir = directions return Hex(hex.col + dir.col, hex.row + dir.row)


Сетка для чётного (EVEN) и нечётного (ODD) столбцов

Диагонали

Перемещение в «диагональном» пространстве в координатах шестиугольников изменяет одну из трёх кубических координат на ±2 и две другие на ∓1 (сумма должна оставаться равной 0).

Var diagonals = [ Cube(+2, -1, -1), Cube(+1, +1, -2), Cube(-1, +2, -1), Cube(-2, +1, +1), Cube(-1, -1, +2), Cube(+1, -2, +1) ] function cube_diagonal_neighbor(hex, direction): return cube_add(hex, diagonals)
Как и раньше, мы можем преобразовать эти координаты в осевые, откинув одну из трёх координат, или преобразовать в координаты смещения, предварительно вычислив результаты.


Расстояния

Кубические координаты

В кубической системе координат каждый шестиугольник является кубом в трёхмерном пространстве. Соседние шестиугольники находятся в сетке шестиугольников на расстоянии 1 друг от друга, но на расстоянии 2 в сетке кубов. Это делает расчёт расстояний простым. В сетке квадратов манхэттенские расстояния равны abs(dx) + abs(dy) . В сетке кубов манхэттенские расстояния равны abs(dx) + abs(dy) + abs(dz) . Расстояние в сетке шестиугольников равно их половине:

Function cube_distance(a, b): return (abs(a.x — b.x) + abs(a.y — b.y) + abs(a.z — b.z)) / 2
Эквивалентом этой записи будет выражение того, что одна из трёх координат должна быть суммой двух других, а затем получение её в качестве расстояния. Можно выбрать форму деления пополам или форму максимального значения, приведённую ниже, но они дают одинаковый результат:

Function cube_distance(a, b): return max(abs(a.x — b.x), abs(a.y — b.y), abs(a.z — b.z))
На рисунке максимальные значения выделены цветом. Заметьте также, что каждый цвет обозначает одно из шести «диагональных» направлений.

GIF


Осевые координаты

В осевой системе третья координата выражена неявно. Давайте преобразуем из осевой в кубическую систему для расчёта расстояния:

Function hex_distance(a, b): var ac = hex_to_cube(a) var bc = hex_to_cube(b) return cube_distance(ac, bc)
Если компилятор в вашем случае встраивает (inline) hex_to_cube и cube_distance , то он сгенерирует такой код:

Function hex_distance(a, b): return (abs(a.q — b.q) + abs(a.q + a.r — b.q — b.r) + abs(a.r — b.r)) / 2
Существует множество различных способов записи расстояний между шестиугольниками в осевых координатах, но вне зависимости от способа записи расстояние между шестиугольниками в осевой системе извлекается из манхэттенского расстояния в кубической системе . Например, описанная «разность разностей» получается из записи a.q + a.r — b.q — b.r как a.q — b.q + a.r — b.r и с использованием формы максимального значения вместо формы деления пополам cube_distance . Все они аналогичны, если увидеть связь с кубическими координатами.

Координаты смещения

Как и в случае с осевыми координатами, мы преобразуем координаты смещения в кубические координаты, а затем используем расстояние кубической системы.

Function offset_distance(a, b): var ac = offset_to_cube(a) var bc = offset_to_cube(b) return cube_distance(ac, bc)
Мы будем использовать тот же шаблон для многих алгоритмов: преобразуем из шестиугольников в кубы, выполняем кубическую версию алгоритма и преобразуем кубические результаты в координаты шестиугольников (осевые или координаты смещения).

Отрисовка линий

Как нарисовать линию от одного шестиугольника до другого? Я использую линейную интерполяцию для рисования линий . Линия равномерно сэмплируется в N+1 точках и вычисляется, в каких шестиугольниках находятся эти сэмплы.

GIF


  1. Сначала мы вычисляем N , которое будет расстоянием в шестиугольниках между конечными точками.
  2. Затем равномерно сэмплируем N+1 точек между точками A и B. С помощью линейной интерполяции определяем, что для значений i от 0 до N , включая их, каждая точка будет A + (B — A) * 1.0/N * i . На рисунке эти контрольные точки показаны синим. В результате получаются координаты с плавающей запятой.
  3. Преобразуем каждую контрольную точку (float) обратно в шестиугольники (int). Алгоритм называется cube_round (см. ниже).
Соединяем всё вместе для отрисовки линии от A до B:

Function lerp(a, b, t): // для float return a + (b — a) * t function cube_lerp(a, b, t): // для шестиугольников return Cube(lerp(a.x, b.x, t), lerp(a.y, b.y, t), lerp(a.z, b.z, t)) function cube_linedraw(a, b): var N = cube_distance(a, b) var results = for each 0 ≤ i ≤ N: results.append(cube_round(cube_lerp(a, b, 1.0/N * i))) return results
Примечания:

  • Бывают случаи, когда cube_lerp возвращает точку, находящуюся точно на грани между двумя шестиугольниками. Затем cube_round сдвигает её в ту или иную сторону. Линии выглядят лучше, если их сдвигают в одном направлении. Это можно сделать, добавив «эпсилон»-шестиугольный Cube(1e-6, 1e-6, -2e-6) к одной или обеим конечным точкам перед началом цикла. Это «подтолкнёт» линию в одном направлении, чтобы она не попадала на границы граней.
  • Алгоритм DDA-линии в сетках квадратов приравнивает N к максимуму расстояния по каждой из осей. Мы делаем то же самое в кубическом пространстве, что аналогично расстоянию в сетке шестиугольников.
  • Функция cube_lerp должна возвращать куб с координатами в float. Если вы программируете на языке со статической типизацией, то не сможете использовать тип Cube . Вместо него можно определить тип FloatCube или встроить (inline) функцию в код отрисовки линий, если вы не хотите определять ещё один тип.
  • Можно оптимизировать код, встроив (inline) cube_lerp , а затем рассчитав B.x-A.x , B.x-A.y и 1.0/N за пределами цикла. Умножение можно преобразовать в повторяющееся суммирование. В результате получится что-то вроде алгоритма DDA-линии.
  • Для отрисовки линий я использую осевые или кубические координаты, но если вы хотите работать с координатами смещения, то изучите .
  • Существует много вариантов отрисовки линий. Иногда требуется «сверхпокрытие» . Мне прислали код отрисовки линий с сверхпокрытием в шестиугольниках, но я пока не изучал его.

Диапазон перемещения

Диапазон координат

Для заданного центра шестиугольника и диапазона N какие шестиугольники находятся в пределах N шагов от него?

Мы можем произвести обратную работу из формулы расстояния между шестиугольниками distance = max(abs(dx), abs(dy), abs(dz)) . Чтобы найти все шестиугольники в пределах N , нам нужны max(abs(dx), abs(dy), abs(dz)) ≤ N . Это значит, что нужны все три значения: abs(dx) ≤ N и abs(dy) ≤ N и abs(dz) ≤ N . Убрав абсолютное значение, мы получим -N ≤ dx ≤ N и -N ≤ dy ≤ N и -N ≤ dz ≤ N . В коде это будет вложенный цикл:

Var results = for each -N ≤ dx ≤ N: for each -N ≤ dy ≤ N: for each -N ≤ dz ≤ N: if dx + dy + dz = 0: results.append(cube_add(center, Cube(dx, dy, dz)))
Этот цикл сработает, но будет довольно неэффективным. Из всех значений dz , которые мы перебираем в цикле, только одно действительно удовлетворяет условию кубов dx + dy + dz = 0 . Вместо этого мы напрямую вычислим значение dz , удовлетворяющее условию:

Var results = for each -N ≤ dx ≤ N: for each max(-N, -dx-N) ≤ dy ≤ min(N, -dx+N): var dz = -dx-dy results.append(cube_add(center, Cube(dx, dy, dz)))
Этот цикл проходит только по нужным координатам. На рисунке каждый диапазон является парой линий. Каждая линия — это неравенство. Мы берём все шестиугольники, удовлетворяющие шести неравенствам.

GIF


Пересекающиеся диапазоны

Если нужно найти шестиугольники, находящиеся в нескольких диапазонах, то перед генерированием списка шестиугольников можно пересечь диапазоны.

Можно подойти к этой проблеме с точки зрения алгебры или геометрии. Алгебраически каждая область выражается как условия неравенств в форме -N ≤ dx ≤ N , и нам нужно найти пересечение этих условий. Геометрически каждая область является кубом в трёхмерном пространстве, и мы пересечём два куба в трёхмерном пространстве для получения прямоугольного параллелепипеда в трёхмерном пространстве. Затем мы проецируем его обратно на плоскость x + y + z = 0 , чтобы получить шестиугольники. Я буду решать эту задачу алгебраически.

Во-первых, мы перепишем условие -N ≤ dx ≤ N в более общей форме x min ≤ x ≤ x max , и примем x min = center.x — N и x max = center.x + N . Сделаем то же самое для y и z , в результате получив общий вид кода из предыдущего раздела:

Var results = for each xmin ≤ x ≤ xmax: for each max(ymin, -x-zmax) ≤ y ≤ min(ymax, -x-zmin): var z = -x-y results.append(Cube(x, y, z))
Пересечением двух диапазонов a ≤ x ≤ b и c ≤ x ≤ d является max(a, c) ≤ x ≤ min(b, d) . Поскольку область шестиугольников выражена как диапазоны над x , y , z , мы можем отдельно пересечь каждый из диапазонов x , y , z , а затем использовать вложенный цикл для генерирования списка шестиугольников в пересечении. Для одной области шестиугольников мы принимаем x min = H.x — N and x max = H.x + N , аналогично для y и z . Для пересечения двух областей шестиугольников мы принимаем x min = max(h2.x — N, h3.x — N) и x max = min(h2.x + N, h3.x + N), аналогично для y и z . Тот же шаблон работает для пересечения трёх или более областей.

GIF


Препятствия

При наличии препятствий проще всего выполнить заливку с ограничением по расстоянию (поиск в ширину). На рисунке ниже мы ограничиваемся четырьмя ходами. В коде fringes[k] — это массив всех шестиугольников, которых можно достичь за k шагов. При каждом проходе по основному циклу мы расширяем уровень k-1 на уровень k .

Function cube_reachable(start, movement): var visited = set() add start to visited var fringes = fringes.append() for each 1

Повороты

Для заданного вектора шестиугольника (разницу между двумя шестиугольниками) нам может понадобиться повернуть его, чтобы он указывал на другой шестиугольник. Это просто сделать, имея кубические координаты, если придерживаться поворота на 1/6 окружности.

Поворот на 60° вправо сдвигает каждую координату на одну позицию вправо:

[ x, y, z] to [-z, -x, -y]
Поворот на 60° влево сдвигает каждую координату на одну позицию влево:

[ x, y, z] to [-y, -z, -x]


«Поиграв» [в оригинале статьи] со схемой, можно заметить, что каждый поворот на 60° меняет знаки и физически «поворачивает» координаты. После поворота на 120° знаки снова становятся теми же. Поворот на 180° меняет знаки, но координаты поворачиваются в своё изначальное положение.

Вот полная последовательность поворота положения P вокруг центрального положения C, приводящего к новому положению R:

  1. Преобразование положений P и C в кубические координаты.
  2. Вычисление вектора вычитанием центра: P_from_C = P — C = Cube(P.x — C.x, P.y — C.y, P.z — C.z) .
  3. Поворот вектора P_from_C как описано выше и присваивание итоговому вектору обозначения R_from_C .
  4. Преобразование вектора обратно в положение прибавлением центра: R = R_from_C + C = Cube(R_from_C.x + C.x, R_from_C.y + C.y, R_from_C.z + C.z) .
  5. Преобразование кубического положения R обратно в нужную систему координат.
Здесь несколько этапов преобразований, но каждый из них довольно прост. Можно сократить некоторые из этих этапов, определив поворот непосредственно в осевых координатах, но векторы шестиугольников не работают с координатами смещения, и я не знаю, как сократить этапы для координат смещения. См. также обсуждение других способов вычисления поворота на stackexchange.

Кольца

Простое кольцо

Чтобы выяснить, принадлежит ли заданный шестиугольник к кольцу заданного радиуса radius , нужно вычислить расстояние от этого шестиугольника до центра, и узнать, равно ли оно radius . Для получения списка всех таких шестиугольников нужно сделать radius шагов от центра, а затем следовать за поворачиваемыми векторами по пути вдоль кольца.

Function cube_ring(center, radius): var results = # этот код не работает для radius == 0; вы понимаете, почему? var cube = cube_add(center, cube_scale(cube_direction(4), radius)) for each 0 ≤ i В этом коде cube начинается на кольце, показанном большой стрелкой от центра к углу схемы. Я выбрал для начала угол 4, потому что он соответствует пути, в котором двигаются мои числа направлений. Вам может понадобиться другой начальный угол. На каждом этапе внутреннего цикла cube двигается на один шестиугольник по кольцу. Через 6 * radius шагов он завершает там, где начал.

Спиральные кольца

Проходя по кольцам по спиральному паттерну, мы можем заполнить внутренние части колец:

Function cube_spiral(center, radius): var results = for each 1 ≤ k ≤ radius: results = results + cube_ring(center, k) return results


Площадь большого шестиугольника равна сумме всех окружностей плюс 1 для центра. Для вычисления площади используйте эту формулу .

Обход шестиугольников таким способом можно также использовать для вычисления диапазона перемещения (см. выше).

Область видимости

Что видимо из заданного положения с заданным расстоянием, и не перекрывается препятствиями? Простейший способ определить это — нарисовать линию к каждому шестиугольнику в заданном диапазоне. Если линия не встречается со стенами, то вы видите шестиугольник. Перемещайте мышь по шестиугольникам [на схеме в оригинале статьи], чтобы увидеть отрисовку линий к этим шестиугольникам и стены, с которыми линии встречаются.

Этот алгоритм может быть медленным на больших площадях, но его легко реализовать, поэтому рекомендую начать с него.

GIF



Существует много разных определений видимости. Хотите ли вы видеть центр другого шестиугольника из центра начального? Хотите ли вы видеть любую часть другого шестиугольника из центра начального? Может быть, любую часть другого шестиугольника из любой точки начального? Мешающие взгляду препятствия меньше полного шестиугольника? Область видимости — это более хитрое и разнообразное понятие, чем кажется на первый взгляд. Начнём с простейшего алгоритма, но ждите, что он обязательно правильно вычислит ответ в вашем проекте. Бывают даже случаи, когда простой алгоритм даёт нелогичные результаты.

Я хочу в дальнейшем расширять это руководство. У меня есть

Геометрические построения являются одной из главных частей обучения. Они формируют пространственное и логическое мышление, а также разрешают понять примитивные и натуральные геометрические обоснованности. Построения производятся на плоскости при помощи циркуля и линейки. Этими инструментами дозволено возвести крупное число геометрических фигур. При этом многие фигуры, кажущиеся довольно трудными, строятся с использованием простейших правил. Скажем, то, как возвести верный шестиугольник, дозволено описать каждого в нескольких словах.

Вам понадобится

  • Циркуль, линейка, карандаш, лист бумаги.

Инструкция

1. Нарисуйте окружность. Установите некоторое расстояние между ножками циркуля. Это расстояние будет являться радиусом окружности. Выберите радиус таким образом, дабы вычерчивание окружности было довольно комфортным. Окружность должна всецело помещаться на листе бумаги. Слишком огромное либо слишком маленькое расстояние между ножками циркуля может привести к его изменению во время черчения. Оптимальным будет расстояние, при котором угол между ножками циркуля равен 15-30 градусов.

2. Постройте точки вершин углов верного шестиугольника. Установите ножку циркуля, в которой закреплена игла, в всякую точку окружности. Игла должна проткнуть начерченную линию. Чем вернее будет установлен циркуль, тем вернее будет построение. Проведите дугу окружности так, дабы она пересекла начерченную ранее окружность. Переставьте иглу циркуля в точку пересечения только что начерченной дуги с окружностью. Начертите еще одну дугу, пересекающую окружность. Вновь переставьте иглу циркуля в точку пересечения дуги и окружности и вновь начертите дугу. Произведите данное действие еще три раза, перемещаясь в одном направлении по окружности. Каждого должно получиться шесть дуг и шесть точек пересечения.

3. Постройте положительный шестиугольник. Ступенчато объедините все шесть точек пересечения дуг с изначально начерченной окружностью. Соединяйте точки прямыми, вычерчиваемыми при помощи линейки и карандаша. Позже произведенных действий будет получен верный шестиугольник, вписанный в окружность.

Шестиугольником считается многоугольник, владеющий шестью углами и шестью сторонами. Многоугольники бывают как выпуклыми, так и вогнутыми. У выпуклого шестиугольника все внутренние углы тупые, у вогнутого один либо больше угол является острым. Шестиугольник довольно легко возвести. Это делается в пару шагов.

Вам понадобится

  • Карандаш, лист бумаги, линейка

Инструкция

1. Берется лист бумаги и на нем отмечается 6 точек приблизительно так, как это показано на рис. 1.

2. Позже того, как были подмечены точки, берется линейка, карандаш и с их подмогой ступенчато, друг за ином соединяются точки так, как это выглядит на рис. 2.

Видео по теме

Обратите внимание!
Сумма всех внутренних углов шестиугольника равна 720 градусам.

Шестиугольник – это многоугольник, тот, что владеет шестью углами. Для того, дабы начертить произвольный шестиугольник, надобно проделать каждого 2 действия.

Вам понадобится

  • Карандаш, линейка, лист бумаги.

Инструкция

1. Нужно взять в руку карандаш и разметить на листе 6 произвольных точек. В дальнейшем эти точки будут исполнять роль углов в шестиугольнике. (рис.1)

2. Взять линейку и начертить по данным точкам 6 отрезков, которые бы соединялись друг с ином по начерченным ранее точкам (рис.2)

Видео по теме

Обратите внимание!
Специальным типом шестиугольника является положительный шестиугольник. Он именуется таковым потому, что все его стороны и углы равны между собой. Вокруг такого шестиугольника дозволено описать либо вписать окружность. Стоит подметить, что в точках, которые получились путем касания вписанной окружности и сторон шестиугольника, стороны положительного шестиугольника делятся напополам.

Полезный совет
В природе положительные шестиугольники владеют крупный популярностью. К примеру, вся пчелиная сота владеет положительной шестиугольной формой. Либо кристаллическая решетка графена (модификация углерода) тоже владеет формой положительного шестиугольника.

Как возвести тот либо другой угол – крупной вопрос. Но для некоторых углов задача невидимо упрощается. Одним из таких углов является угол в 30 градусов. Он равен?/6, то есть число 30 является делителем 180. Плюс к этому его синус вестим. Это и помогает при его построении.

Вам понадобится

  • транспортир, угольник, циркуль, линейка

Инструкция

1. Для начала разглядим особенно примитивную обстановку, когда у вас на руках есть транспортир. Тогда прямую под углом 30 градусов к данной дозволено легко отложить с поддержкой него.

2. Помимо транспортира существуют и угол ьники, один из углов которых равен 30 градусам. Тогда иной угол угол ьника будет равен 60 градусам, то есть вам необходим визуально меньший угол для построения требуемой прямой.

3. Перейдем сейчас к нетривиальным способам построения угла 30 градусов. Как вестимо, синус угла 30 градусов равен 1/2. Для его построения нам надобно возвести прямоугол ьный треугол ьник. Возможен, мы можем возвести две перпендикулярные прямые. Но тангенс 30 градусов – иррациональное число, следственно соотношение между катетами мы можем посчитать лишь примерно (исключительно, если нет калькулятора), а, значит, и возвести угол в 30 градусов примерно.

4. В этом случае дозволено сделать и точное построение. Возведем вновь две перпендикулярные прямые, на которых будут располагаться катеты прямоугол ьного треугол ьника. Отложим по одной прямой катет BC какой-нибудь длины с поддержкой циркуля (B – прямой угол ). После этого увеличим длину между ножками циркуля в 2 раза, что элементарно. Проводя окружность с центром в точке C с радиусом этой длины, обнаружим точку пересечения окружности с иной прямой. Эта точка и будет точкой A прямоугол ьного треугол ьника ABC, а угол A будет равен 30 градусам.

5. Возвести угол в 30 градусов дозволено и с поддержкой окружности, применяя то, что он равен?/6. Возведем окружность с радиусом OB. Разглядим в теории треугол ьник, где OA = OB = R – радиус окружности, где угол OAB = 30 градусов. Пускай OE – высота этого равнобедренного треугол ьника, а, следственно, и его биссектриса и медиана. Тогда угол AOE = 15 градусов, и, по формуле половинного угла, sin(15o) = (sqrt(3)-1)/(2*sqrt(2)).Следственно, AE = R*sin(15o). Отсель, AB = 2AE = 2R*sin(15o). Строя окружность радиусом BA с центром в точке B, обнаружим точку пересечения A этой окружности с начальной. Угол AOB будет равен 30 градусам.

6. Если мы можем определять длину дуг каким-нибудь образом, то, отложив дугу длиной?*R/6, мы также получим угол в 30 градусов.

Обратите внимание!
Нужно помнить, что в 5 пункте мы можем возвести угол лишь приближенно, потому что в вычислениях будут фигурировать иррациональные числа.

Шестиугольником называют частный случай полигона – фигуры, образованной большинством точек плоскости, ограниченным замкнутой полилинией. Положительный шестиугольник (гексагон), в свою очередь, также является частным случаем – это полигон с шестью равными сторонами и равными углами. Эта фигура знаменательна тем, что длина всей из ее сторон равна радиусу описанной вокруг фигуры окружности.

Вам понадобится

  • – циркуль;
  • – линейка;
  • – карандаш;
  • – лист бумаги.

Инструкция

1. Выберите длину стороны шестиугольника. Возьмите циркуль и установите расстояние между концом иглы, расположенной на одной из его ножек, и концом грифеля, расположенным на иной ножке, равным длине стороны вычерчиваемой фигуры. Для этого дозволено воспользоваться линейкой либо предпочесть случайное расстояние, если данный момент несущественен. Зафиксируйте ножки циркуля винтом, если есть такая вероятность.

2. Нарисуйте окружность при помощи циркуля. Выбранное расстояние между ножками будет являться радиусом окружности.

3. Разбейте окружность точками на шесть равных частей. Эти точки будут являться вершинами углов шестиугольника и, соответственно, окончаниями отрезков, представляющих его стороны.

4. Ножку циркуля с иглой установите в произвольную точку, находящуюся на линии очерченной окружности. Игла должна верно проткнуть линию. От точности установки циркуля напрямую зависит точность построений. Очертите циркулем дугу так, дабы она пересекла в 2-х точках окружность, начерченную первой.

5. Переставьте ножку циркуля с иглой в одну из точек пересечения начерченной дуги с изначальной окружностью. Вычертите еще одну дугу, также пересекающую окружность в 2-х точках (одна из них совпадет с точкой предыдущего расположения иглы циркуля).

6. Сходственным же образом переставляйте иглу циркуля и вычерчивайте дуги еще четыре раза. Перемещайте ножку циркуля с иглой в одном направлении по окружности (неизменно по либо вопреки часовой стрелки). В итоге обязаны быть выявлены шесть точек пересечения дуг с изначально построенной окружностью.

7. Нарисуйте положительный шестиугольник. Ступенчато попарно объедините отрезками полученные на предыдущем шаге шесть точек. Вычерчивайте отрезки при помощи карандаша и линейки. В итоге будет получен верный шестиугольник. Позже осуществления построения дозволено стереть вспомогательные элементы (дуги и окружность).

Обратите внимание!
Имеет толк выбирать такое расстояние между ножками циркуля, дабы угол между ними был равен 15-30 градусов, напротив при осуществлении построений данное расстояние может легко сбиться.

При строительстве либо разработке домашних дизайн-планов зачастую требуется возвести угол , равный теснее имеющемуся. На поддержка приходят образцы и школьные умения геометрии.

Инструкция

1. Угол образуют две прямые, исходящие из одной точки. Эта точка будет именоваться вершиной угла, а линии будут являться сторонами угла.

2. Для обозначения углов используйте три буквы: одна у вершины, две у сторон. Называют угол , начиная с той буквы, которая стоит у одной стороны, дальше называют букву, стоящую у вершины, и после этого букву у иной стороны. Используйте и другие методы для обозначения углов, если вам комфортнее напротив. Изредка называют только одну букву, которая стоит у вершины. А дозволено обозначать углы греческими буквами, скажем, α, β, γ.

3. Встречаются обстановки, когда нужно начертить угол , дабы он был равен теснее данному углу. Если при построении чертежа применять транспортир вероятности нет, дозволено обойтись только линейкой и циркулем. Возможен, на прямой, обозначенной на чертеже буквами MN, надобно возвести угол у точки К, так, дабы он был равен углу В. То есть из точки K нужно провести прямую, образующую с линией MN угол , тот, что будет равен углу В.

4. В начале подметьте по точке на всей стороне данного угла, скажем, точки А и С, дальше объедините точки С и А прямой линией. Получите треугол ьник АВС.

5. Теперь постройте на прямой MN такой же треугол ьник, дабы его вершина В находилась на линии в точке К. Используйте правило построения треугол ьника по трем сторонам. Отложите от точки К отрезок KL. Он должен быть равен отрезку ВС. Получите точку L.

6. Из точки K вычертите окружность радиусом равным отрезку ВА. Из L вычертите окружность радиусом СА. Полученную точку (Р) пересечения 2-х окружностей объедините с К. Получите треугол ьник КPL, тот, что будет равен треугол ьнику ABC. Так вы получите угол К. Он и будет равен углу В. Дабы это построение сделать комфортнее и стремительней, от вершины В отложите равные отрезки, применяя один раствор циркуля, не сдвигая ножек, опишите этим же радиусом из точки К окружность.

Видео по теме

Обратите внимание!
Избегайте случайного метаморфозы расстояния между ножками циркуля. В этом случае шестиугольник может получиться неправильным.

Полезный совет
Имеет толк изготавливать построения при помощи циркуля с отлично заточенным грифелем. Так построения будут особенно точны.

формулы. Площадь боковой поверхности правильной пирамиды, онлайн расчет

Фигура пирамида

Прежде чем приводить определение апофемы пирамиды, познакомимся с самой фигурой. Пирамида представляет собой многогранник, который образован одним n-угольным основанием и n треугольниками, составляющими боковую поверхность фигуры.

Всякая пирамида имеет вершину – точку соединения всех треугольников. Перпендикуляр, проведенный из этой вершины к основанию, называется высотой. Если высота пересекает в геометрическом центре основание, то фигура называется прямой. Пирамида прямая, имеющая равностороннее основание, называется правильной. На рисунке показана пирамида с шестиугольным основанием, на которую смотрят со стороны грани и ребра.

Элементы правильной пирамиды

  • Высота боковой грани, проведенная из ее вершины называется апофема. На рисунке обозначена как отрезок ON
  • Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
  • Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
  • Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
  • Диагональное сечение пирамиды – это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
  • Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)

Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной, четырехугольной и т.д.

Треугольная пирамида есть четырехгранник — тетраэдр.

Шестиугольная пирамида

В целом это одна из последних и самых сложных тем в стереометрии. Изучается где-то в 10-11 классах и рассматривается только вариант, когда в основании находится правильная фигура. Одно из труднейших заданий по ЕГЭ зачастую бывает связано с этим параграфом.

И-так, в основании правильной шестиугольной пирамиды лежит правильный шестиугольник. Что это значит? У фигуры в основании все стороны равны. Боковые же части состоят из равнобедренных треугольников. Вершины их соприкасаются в одной точке. Данная фигура представлена на фото ниже.

Какая пирамида будет изучаться

Правильная шестиугольная пирамида представляет собой фигуру в пространстве, которая ограничена одним равносторонним и равноугольным шестиугольником, и шестью одинаковыми треугольниками равнобедренными. Эти треугольники могут быть также равносторонними при определенных условиях. Эта пирамида ниже показана.

Здесь изображена одна и та же фигура, только в одном случае она повернута боковой гранью к читателю, а в другом – боковым ребром.

Правильная шестиугольная пирамида имеет 7 граней, которые были названы выше. Также ей принадлежат 7 вершин и 12 ребер. В отличие от призм, у всех пирамид имеется одна особая вершина, которая образована пересечением боковых треугольников. Для правильной пирамиды она играет важную роль, поскольку опущенный с нее на основание фигуры перпендикуляр является высотой. Далее высоту будем обозначать буквой h.

Показанная пирамида называется правильной по двум причинам:

  • в ее основании находится шестиугольник с равными длинами сторон a и с одинаковыми углами по 120o>;
  • высота пирамиды h пересекает шестиугольник точно в его центре (точка пересечения лежит на одинаковом расстоянии от всех сторон и от всех вершин шестиугольника).

Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.

Формулы для правильной пирамиды

Формулы для нахождения объема и площади боковой поверхности:

Обозначения:
V – объем пирамиды
S – площадь основания
h – высота пирамиды
Sb – площадь боковой поверхности
a – апофема (не путать с α)
P – периметр основания
n – число сторон основания
b – длина бокового ребра
α – плоский угол при вершине пирамиды

Данная формула нахождения объема может применяться только для правильной пирамиды:

, где

V – объем правильной пирамиды
h – высота правильной пирамиды
n – число сторон правильного многоугольника, который является основанием для правильной пирамиды
a – длина стороны правильного многоугольника

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

боковые ребра образуют с плоскостью основания равные углы

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Верно и обратное.

Найти площадь поверхности через:

Виды пирамид

Существуют 3 вида пирамид:

  1. Прямоугольная — та, у которой какое-либо ребро образует прямой угол с основанием.
  2. Правильная — у нее основание – правильная геометрическая фигура, а вершина самого многоугольника является проекцией центра основания.
  3. Тетраэдр — пирамида, составленная из треугольников. Причем каждый из них может быть принят за основание.

Объем пирамиды

Так же, как и площадь, объем шестиугольной правильной пирамиды является важным ее свойством. Этот объем рассчитывается по общей формуле для всех пирамид и конусов. Запишем ее:

V = 1/3*So*h.

Здесь символом So названа площадь шестиугольного основания, то есть So = S6.

Подставляя в формулу для V записанное выше выражение для S6, приходим к конечному равенству для определения объема пирамиды шестиугольной правильной:

V = √3/2*a2 *h.

Тетраэдры. Правильные тетраэдры

Определение 5. Произвольную треугольную пирамиду называют тетраэдром.

Утверждение. У любой правильной треугольной пирамиды противоположные ребра попарно перпендикулярны.

Доказательство. Рассмотрим правильную треугольную пирамиду SABC и пару ее противоположных ребер, например, AC и BS. Обозначим буквой D середину ребра AC. Поскольку отрезки BD и SD являются медианами в равнобедренных треугольниках ABC и ASC, то BD и SD перпендикулярны ребру AC (рис. 4).

Рис.4

По признаку перпендикулярности прямой и плоскости заключаем, что прямая AC перпендикулярна плоскости BSD. Следовательно, прямая AC перпендикулярна прямой BS, что и требовалось доказать.

Определение 6. Правильную треугольную пирамиду, у которой все ребра равны, называют правильным тетраэдром (рис. 5).

Рис.5

Задача. Найти высоту правильного тетраэдра с ребром a .

Решение. Рассмотрим правильный тетраэдр SABC. Пусть точка O – основание перпендикуляра, опущенного из вершины S на плоскость ABC. Поскольку SABC – правильная пирамида, то точка O является точкой пересечения медиан равностороннего треугольника ABC. Следовательно,

где буквой D обозначена середина ребра AC (рис. 6).

Рис.6

Так как

,

то

.

По теореме Пифагора из треугольника BSO находим

.

Ответ.

Площадь правильной треугольной пирамиды

Основание: равносторонний треугольник.

L (апофема) – перпендикулярная линия, опущенная из вершины пирамиды на ребро основания. Т.е. апофема пирамиды является высотой (h) ее боковой грани.

Правильная усеченная пирамида

Если провести сечение, параллельное основанию пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой. Это сечение для усеченной пирамиды является одним из её оснований.

Высота боковой грани (которая является равнобокой трапецией), называется — апофема правильной усеченной пирамиды.

Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная.

  • Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды
  • Все грани правильной усеченной пирамиды являются равнобокими (равнобедренными) трапециями

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

Правильный треугольник

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

S = (а2 * √3) / 4.

Квадрат

Формула для вычисления его площади самая простая, здесь «а» – снова сторона:

S = а2.

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

S = (n * а2) / (4 * tg (180º/n)).

Площадь правильной четырехугольной пирамиды

Основание: квадрат.

периметр, площадь и апофему стороны и высоту
Периметр основания (P):
Площадь основания (Sосн):
Апофема (L):
Сторона основания (a):
Число сторон основания (n):
Высота пирамиды (h):

Пирамида – многогранник, основание которого — многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Площадь поверхности правильной пирамиды формула:
, где P – периметр основания, Sосн – площадь основания, L – апофема (перпендикуляр, из вершины на ребро основания)

Площадь поверхности правильной пирамиды формула:
, где a – сторона основания, n – число сторон основания, h – высота пирамиды

Правильный пятиугольник циркулем. Деление окружности на равные части и вписывание правильных многоугольников

Уровень сложности: Несложно

1 шаг

Сначала, выбирайте, где разместить центр окружности. Там нужно поставить начальную точку, пусть она называется О. С помощью циркуля вычерчиваем вокруг нее окружность заданного диаметра или радиуса.

2 шаг

Затем проводим две оси через точку О, центр окружности, одна горизонтальная, другая под 90 градусов по отношению к ней – вертикальная. Точки пересечения по горизонтали назовем слева на право А и В, по вертикали, сверху вниз – М и Н. Радиус, который лежит на любой оси, например, на горизонтальной в правой части, делим пополам. Это можно сделать так: циркуль с радиусом известной нам окружности устанавливаем острием в точку пересечения горизонтальной оси и окружности – В, отчеркиваем пересечения с окружностью, полученные точки называем, соответственно сверху вниз – С и Р, соединяем их отрезком, который будет пересекать ось ОВ, точку пересечения называем К.

3 шаг

Соединяем точки К и М и получаем отрезок КМ, устанавливаем циркуль в точку М, задаем на нем расстояние до точки К и очерчиваем метки на радиусе ОА, эту точку называем Е, далее ведем циркуль до пересечения с левой верхней частью окружности ОМ. Эту точку пересечения называем F. Расстояние равное отрезку МЕ является искомой стороной равностороннего пятиугольника. При этом точка М будет являться одной вершиной встраиваемого в окружность пятиугольника, а точка F – другой.

4 шаг

Далее из полученных точек по всей окружности отчерчиваем циркулем расстояния, равные отрезку МЕ, всего точек должно получиться 5. Соединяем все точки отрезками – получаем пятиугольник, вписанный в окружность.

  • При черчении будьте аккуратны в измерениях расстояний, не допускайте погрешностей, чтобы пятиугольник действительно полчился равносторонним

Построение вписанного в окружность правильного шестиугольника.

Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения достаточно разделить окружность на шесть равных частей и соединить найденные точки между собой.

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4, строим стороны 1 — 6, 4 — 3, 4 — 5 и 7 — 2, после чего проводим стороны 5 — 6 и 3 — 2.

Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного циркуля. Рассмотрим два способа построения вписанного в окружность равностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, проведённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0 — 1 — 2 равен 30°, то для нахождения стороны 1 — 2 достаточно построить по точке 1 и стороне 0 — 1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1 — 2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2 — 3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 проводим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вершины через одну, то получится равносторонний треугольник.

Для построения треугольника намечаем на диаметре вершину точку 1 и проводим диаметральную линию 1 — 4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окружностью в точках 3 и 2. Полученные точки будут двумя другими вершинами искомого треугольника.

Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пересекаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные стороны квадрата 4 — 1 и 3 -2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1 — 2 и 4 — 3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра. Намечаем на концах двух взаимно перпендикулярных диаметров точки А, В и С и из них радиусом у описываем дуги до взаимного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные прямые, отмеченные на фигуре сплошными линиями. Точки их пересечения с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник, производим следующие построения. Намечаем на окружности точку 1 и принимаем её за одну из вершин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вершины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую. Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB. Получим точку 1 -вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведёнными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиусом, равным диаметру окружности D, описываем дугу до пересечения с продолжением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, проводим из полюса F через чётные деления вертикального диаметра лучи, пересечение которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем последовательно между собой. Семиугольник может быть построен путём проведения лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоугольников с любым числом сторон.

Деление окружности на любое число равных частей можно производить также, пользуясь данными табл. 2, в которой приведены коэффициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

Длины сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй — коэффициенты. Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

8 июня 2011

Первый способ — по данной стороне S с помощью транспортира.

Проводим прямую и откладываем на ней AB = S; принимаем эту линию за радиус и этим радиусом из точек A и В описываем дуги: далее с помощью транспортира строим в этих точках углы в 108°, стороны которых пересекутся с дугами в точках С и D; из этих точек радиусом АВ = 5 описываем дуги, которые пересекутся в Е, и прямыми линиями соединяем точки Л, С, Е, D, В.

Полученный пятиугольник
— искомый.

Второй способ. Проведем окружность радиусом r. Из точки А циркулем проводим дугу радиуса AM до пересечения в точках В и С с окружностью. Соединяем В и С линией, которая пересечет горизонтальную ось в точке Е.

Затем из точки Е проводим дугу, которая пересечет горизонтальную линию в точке О. Описываем, наконец, из точки F дугу, которая пересечет окружность в точках Н и К. Отложив по окружности расстояние FO = FH = FK пять раз и соединив точки деления линиями, получим правильный пятиугольник.

Третий способ. В данный круг вписать правильный пятиугольник. Проводим два взаимно перпендикулярных диаметра АВ и МС. Делим радиус АО точкой Е пополам. Из точки Е, как из центра, проводим дугу окружности радиуса ЕМ и засекаем ею диаметр АВ в точке F. Отрезок MF равен стороне искомого правильного пятиугольника. Раствором циркуля, равным MF, делаем засечки N 1 , Р 1 , Q 1 , К 1 и соединяем их прямыми.

На рисунке построен шестиугольник по данной стороне.

Прямой АВ = 5, как радиусом, из точек А и В описываем дуги, которые пересекутся в С; из этой точки тем же радиусом описываем окружность, на которой сторона А В отложится 6 раз.

Шестиугольник ADEFGB
— искомый. 

«Отделка комнат при ремонте»,
Н.П.Краснов


Первый способ построения. Проводим горизонтальную (АВ) и вертикальную (CD) оси и из точки их пересечения М откладываем в соответствующем масштабе полуоси. Наносим малую полуось от точки М на большой оси до точки Е. Эллипс, первый способ построения Делим BE на 2 части и одну наносим от точки М на большой оси (до F или H)…


Основанием для нанесения росписи служат полностью законченные окраской поверхности стен, потолков и других конструкций; роспись делается по высококачественным клеевым и масляным окраскам, сделанным под торцовку или флейц. Приступая к разработке эскиза отделки, мастер должен ясно представить себе всю композицию в бытовой обстановке и отчетливо осознать творческий замысел. Только при соблюдении этого основного условия можно правильно…

Обмер выполненных работ, за исключением особо оговоренных случаев, производится по площади действительно обработанной поверхности с учетом ее рельефа и за вычетом необработанных мест. Для определения действительно обработанных поверхностей при малярных работах следует пользоваться переводными коэффициентами, приведенными в таблицах. А. Деревянные оконные устройства (обмер производится по площади проемов по наружному обводу коробок) Наименование устройств Коэффициент при…

Правильный пятиугольник представляет собой геометрическую фигуру, которая образовывается пересечением пяти прямых, создающих пять одинаковых углов. Такая фигура носит название — пентагон. С пятиугольником тесно связана работа художников — их рисунки строятся на основе правильных геометрических фигур. Для этого необходимо знать то, как быстро построить пентагон.

Чем интересна эта фигура? Форму пентагона имеет здание Министерства обороны Соединенных Штатов Америки . Это можно увидеть на фото, сделанных с высоты полета. В природе не существует кристаллов и камней, форма которых напоминала бы пентагон. Только в этой фигуре количество граней совпадает с числом диагоналей.

Параметры правильного пятиугольника

Прямоугольный пятиугольник, как и каждая фигура в геометрии, имеет свои параметры. Зная необходимые формулы, можно рассчитать эти параметры, что облегчит процесс построения пентагона. Способы и формулы расчетов:

  • сумма всех углов в многоугольниках равна 360 градусам. В правильном пятиугольнике все углы равны, соответственно, центральный угол находится таким способом: 360/5 = 72 градуса;
  • внутренний угол находится таким образом: 180*(n -2)/ n = 180*(5−2)/5 = 108 градусов. Сумма всех внутренних углов: 108*5 = 540 градусов.

Сторона пентагона находится с помощью параметров, которые уже даны в условии задачи:

  • если вокруг пятиугольника описана окружность и известен ее радиус, сторона находится по такой формуле: a = 2*R*sin (α/2) = 2*R*sin (72/2) = 1,1756*R.
  • Если известен радиус вписанной в пентагон окружности, то формула расчета стороны многоугольника: 2*r*tg (α/2) = 2*r*tg (α/2) = 1,453*r.
  • При известной величине диагонали пентагона его сторона рассчитывается таким образом: а = D/1,618.

Площадь пентагона так же , как и его сторона, зависит от уже найденных параметров:

  • с помощью известного радиуса вписанной окружности площадь находится так: S = (n*a*r)/2 = 2,5*a*r.
  • описанная вокруг пятиугольника окружность позволяет найти площадь по такой формуле: S = (n*R2*sin α)/2 = 2,3776*R2.
  • в зависимости от стороны пентагона: S = (5*a2*tg 54°)/4 = 1,7205* a2.

Построение пентагона

Построить правильный пятиугольник можно с помощью линейки и циркуля, на основе вписанной в него окружности или одной из сторон.

Как начертить пятиугольник на основе вписанной окружности? Для этого необходимо запастись циркулем и линейкой и сделать такие шаги:

  1. Сначала необходимо начертить окружность с центром О, после чего на ней выбрать точку, А — вершину пентагона. От центра к вершине проводится отрезок.
  2. Затем строится перпендикулярная прямой ОА отрезок, который также проходит через О — центр окружности. Его пересечение с окружностью обозначается точкой В. Отрезок О. В. делится пополам точкой С.
  3. Точка С станет центром новой окружности, проходящей через А. Точка D — это ее пересечение с прямой ОВ в границах первой фигуры.
  4. После этого проводится третья окружность через D, центром которой является точка А. Она пересекается с первой фигурой в двух точках, их необходимо обозначить буквами Е и F.
  5. Следующая окружность имеет центр в точке Е и проходит через А, а ее пересечение с первоначальной находится в новой точке G.
  6. Последняя окружность в этом рисунке проводится через точку, А с центром F. На ее пересечении с начальной ставится точка Н.
  7. На первой окружности после всех проделанных шагов появились пять точек, которые необходимо соединить отрезками. Таким образом получился правильный пятиугольник АЕ G Н F.

Как построить правильный пятиугольник иным способом? С помощью линейки и циркуля пентагон можно построить немного быстрее. Для этого необходимо:

  1. Cначала необходимо с помощью циркуля нарисовать окружность, центр которой — точка О.
  2. Чертится радиус ОА — отрезок, который откладывается на окружность. Его делят пополам точкой В.
  3. Перпендикулярно радиусу ОА начерчивается отрезок ОС, точки В и С соединяются прямой.
  4. Следующим шагом является отложение длины отрезка ВС с помощью циркуля на диаметральной линии. Перпендикулярно отрезку ОА появляется точка D. Точки В и D соединяются, образуя новый отрезок.
  5. Для того, чтобы получить величину стороны пентагона, необходимо соединить точки С и D.
  6. D с помощью циркуля переносится на окружность и обозначается точкой Е. Соединив Е и С, можно получить первую сторону правильного пятиугольника. Следуя этой инструкции можно узнать о том, как быстро построить пятиугольник с равными сторонами, продолжая построение остальных его сторон подобно первой.

В пятиугольнике с одинаковыми сторонами диагонали равны и образуют пятиконечную звезду, которая называется пентаграммой. Золотое сечение — это отношение величины диагонали к стороне пентагона.

Пентагон непригоден для полного заполнения плоскости. Использование любого материала в этой форме оставляет промежутки или образует наложения. Хотя природных кристаллов этой формы не существует в природе, но при образовании льда на поверхности гладких медных изделий возникают молекулы в виде пентагона, которые соединены в цепочки.

Наиболее простой способ получить правильный пятиугольник из полоски бумаги — завязать ее узлом и немного придавить. Этот способ полезен для родителей детей-дошкольников, которые хотят научить своих малышей распознавать геометрические фигуры.

Видео

Посмотрите, как можно быстро начертить пятиугольник.






5.3. Золотой пятиугольник; построение Евклида.

Замечательный пример «золотого сечения» представляет собой правильный пятиугольник – выпуклый и звездчатый (рис. 5).

Для построения пентаграммы необходимо построить правильный пятиугольник.

Пусть О — центр окружности, А — точка на окружности и Е — середина отрезка ОА. Перпендикуляр к радиусу ОА, восстановленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Есть и золотой кубоид- это прямоугольный параллелепипед с ребрами, имеющими длины 1.618, 1 и 0.618.

Теперь рассмотрим доказательство, предложенное Евклидом в «Началах».

Посмотрим теперь, как Евклид использует золотое сечение для того, чтобы построить угол в 72 градуса – именно под таким углом видна сторона правильного пятиугольника

из центра описанной окружности. Начнем с

отрезка АВЕ, разделенного в среднем и

Итак, пусть АС=АЕ. Обозначим через a равные углы ЕВС и СЕВ. Так как АС=АЕ, то угол АСЕ также равен a. Теорема о том, что сумма углов треугольника равна 180 градусов, позволяет найти угол ВСЕ: он равен 180-2a, а угол ЕАС — 3a — 180. Но тогда угол АВС равен 180-a. Суммируя углы треугольника АВС получаем,

180=(3a -180) + (3a-180) + (180 — a)

Откуда 5a=360, значит a=72.

Итак, каждый из углов при основании треугольника ВЕС вдвое больше угла при вершине, равного 36 градусов. Следовательно, чтобы построить правильный пятиугольник, необходимо лишь провести любую окружность с центром в точке Е, пересекающую ЕС в точке Х и сторону ЕВ в точке Y: отрезок XY служит одной из сторон вписанного в окружность правильного пятиугольника; Обойдя вокруг всей окружности, можно найти и все остальные стороны.

Докажем теперь, что АС=АЕ. Предположим, что вершина С соединена отрезком прямой с серединой N отрезка ВЕ. Заметим, что поскольку СВ=СЕ, то угол СNЕ прямой. По теореме Пифагора:

CN 2 = а 2 – (а/2j) 2 = а 2 (1-4j 2)

Отсюда имеем (АС/а) 2 = (1+1/2j) 2 + (1-1/4j 2) = 2+1/j = 1 + j =j 2

Итак, АС = jа = jАВ = АЕ, что и требовалось доказать

5.4.Спираль Архимеда.

Последовательно отсекая от золотых прямоугольников квадраты до бесконечности, каждый раз соединяя противоположные точки четвертью окружности, мы получим довольно изящную кривую. Первым внимание на неё обратил древнегреческий ученый Архимед, имя которого она и носит. Он изучал её и вывел уравнение этой спирали.

В настоящее время спираль Архимеда широко используется в технике.

6.Числа Фибоначчи.

С золотым сечением косвенно связано имя итальянского математика Леонардо из Пизы, который известен больше по своему прозвищу Фибоначчи (Fibonacci — сокращенное filius Bonacci, то есть сын Боначчи)

В 1202г. им была написана книга «Liber abacci», то есть «Книга об абаке» . «Liber abacci» представляет собой объемистый труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший заметную роль в развитии математики в Западной Европе в течение нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими («арабскими») цифрами.

Сообщаемый в книге материал поясняется на большом числе задач, составляющих значительную часть этого трактата.

Рассмотрим одну такую задачу:

«Сколько пар кроликов в один год от одной пары рождается?

Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, дабы узнать, сколько пар кроликов родится в течение этого года, если природа кроликов такова, что через месяц пара кроликов воспроизведет другую, а рождают кролики со второго месяца после своего рождения»

Месяцы 1 2 3 4 5 6 7 8 9 10 11 12
Пары кроликов 2 3 5 8 13 21 34 55 89 144 233 377

Перейдем теперь от кроликов к числам и рассмотрим следующую числовую последовательность:

u 1 , u 2 … u n

в которой каждый член равен сумме двух предыдущих, т.е. при всяком n>2

u n =u n -1 +u n -2 .

Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иррационального значения 1.61803398875… и через раз то превосходящая, то не достигающая его.

Асимптотическое поведение последовательности, затухающие колебания ее соотношения около иррационального числа Ф могут стать более понятными, если показать отношения нескольких пеpвых членов последовательности. В этом примере приведены отношения второго члена к первому, третьего ко второму, четвертого к третьему, и так далее:

1:1 = 1.0000, что меньше фи на 0.6180

2:1 = 2.0000, что больше фи на 0.3820

3:2 = 1.5000, что меньше фи на 0.1180

5:3 = 1.6667, что больше фи на 0.0486

8:5 = 1.6000, что меньше фи на 0.0180

По мере продвижения по суммационной последовательности Фибоначчи каждый новый член будет делить следующий со все большим и большим приближением к недостижимому Ф.

Человек подсознательно ищет Божественную пропорцию: она нужна для удовлетворения его потребности в комфорте.

Пpи делении любого члена последовательности Фибоначчи на следующий за ним получается просто обратная к 1.618 величина (1: 1.618=0.618). Hо это тоже весьма необычное, даже замечательное явление. Поскольку пеpвоначальное соотношение – бесконечная дpобь, у этого соотношения также не должно быть конца.

При делении каждого числа на следующее за ним через одно, получаем число 0.382

Подбирая таким образом соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235 ,2.618 ,1.618,0.618,0.382,0.236.Упомянем также 0.5.Все они играют особую роль в природе и в частности в техническом анализе.

Тут необходимо отметить, что Фибоначчи лишь напомнил свою последовательность человечеству, так как она была известна еще в древнейшие времена под названием Золотое сечение.

Золотое сечение, как мы видели, возникает в связи с правильным пятиугольником, поэтому и числа Фибоначчи играют роль во всем, что имеет отношение к правильным пятиугольникам — выпуклым и звездчатым.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления. Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта (о решении Диофантовых уравнений). Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений. Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд чисел 1, 2, 4, 8, 16…(то есть ряд чисел до n , где любое натуральное число, меньшее n можно представить суммой некоторых чисел этого ряда) на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2…, во втором – это сумма двух предыдущих чисел 2 =1 + 1, 3 = 2 + 1, 5 = 3 + 2…. Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи?

Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5… Рассмотрим числовой ряд, S + 1 первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через S (n), то получим общую формулу S (n) = S (n – 1) + S (n – S – 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 –ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения x S+1 – x S – 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 – знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! То есть золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

7.Золотое сечение в искусстве.

7.1. Золотое сечение в живописи.

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».

Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится «обо всем на свете».

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника..

Также пропорция золотого сечения проявляется в картине Шишкина. На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны — освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали.

В картине Рафаэля «Избиение младенцев» просматривается другой элемент золотой пропорции — золотая спираль. На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции — точки, где пальцы воина сомкнулись вокруг лодыжки ребенка — вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Неизвестно, строил ли Рафаэль золотую спираль или чувствовал её.

Т.Кук использовал при анализе картины Сандро Боттичелли «рождение Венеры» золотое сеченеие.

7.2. Пирамиды золотого сечения.

Широко известны медицинские свойства пирамид, особенно золотого сечения. По некоторым наиболее распространенным мнениям, комната, в которой находится такая пирамида, кажется больше, а воздух — прозрачнее. Сны начинают запоминаться лучше. Также известно, что золотое сечение широко применялась в архитектуре и скульптуре. Примером тому стали: Пантеон и Парфенон в Греции, здания архитекторов Баженова и Малевича

8. Заключение.

Необходимо сказать, что золотое сечение имеет большое применение в нашей жизни.

Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса.

Раковина наутилуса закручена подобно золотой спирали.

Благодаря золотому сечению был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета.

Возбуждение струны в точке, делящей её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации.

На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения.

Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев».

Пропорция обнаружена в картине Сандро Боттичелли «Рождение Венеры»

Известно много памятников архитектуры, построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича.

Иоанну Кеплеру, жившему пять веков назад, принадлежит высказывание: «Геометрия обладает двумя великими сокровищами. Первое — это теорема Пифагора, второе — деления отрезка в крайнем и среднем отношении»

Список литературы

1. Д. Пидоу. Геометрия и искусство. – М.: Мир, 1979.

2. Журнал «Наука и техника»

3. Журнал «Квант», 1973, № 8.

4. Журнал «Математика в школе», 1994, № 2; № 3.

5. Ковалев Ф.В. Золотое сечение в живописи. К.: Выща школа, 1989.

6. Стахов А. Коды золотой пропорции.

7.Воробьев Н.Н. «Числа Фибоначчи» — М.: Наука 1964

8. «Математика — Энциклопедия для детей» М.: Аванта +, 1998

9. Информация из интернета.

Матриц Фибоначчи и так называемых «золотых» матриц, новые компьютерные арифметики, новая теорию кодирования и новая теория криптографии. Суть новой науки, в пересмотре с точки зрения золотого сечения всей математики, начиная с Пифагора, что, естественно, повлечет в теории новые и наверняка очень интересные математические результаты. В практическом отношении – «золотую» компьютеризацию. А поскольку…



Не повлияют на этот результат. Основание золотой пропорции является инвариантом рекурсивных соотношений 4 и 6. В этом проявляется «устойчивость» золотого сечения, одного из принципов организации живой материи. Так же, основание золотой пропорции является решением двух экзотических рекурсивных последовательностей (рис 4.) Рис. 4 Рекурсивных последовательности Фибоначчи так…

Уха — j5, а расстояние от уха до макушки — j6 . Таким образом, в этой статуе мы видим геометрическую прогрессию со знаменателем j: 1, j, j2, j3, j4, j5, j6. (рис.9). Таким образом, золотое сечение – один из основополагающих принципов в искусстве античной Греции. Ритмы сердца и мозга. Равномерно бьется сердце человека – около 60 ударов в минуту в состоянии покоя. Сердце как поршень сжимает…

Поделитесь статьей с друзьями:

Похожие статьи

Как сделать объемный шестиугольник из бумаги схема


Правильный шестиугольник из квадрата | Страна Мастеров

1. 2.

Начинаем складывать с квадрата.

3.

Намечаем на квадрате диагонали.

4.

С помощью защипа намечаем середину правой стороны.

5.

Возвращаем правый угол в исходное положение.

6.

Верхнюю половину правой стороны делим пополам. Для этого закрепку совмещаем с верхним углом. Обе закрепки должны быть параллельны левой стороне.

7.

Сгибаем правый угол так, что бы линия сгиба прошла из середины основания, и намеченные закрепки совпали.

8.

Переворачиваем на противоположную сторону.

9.

Перегибаем правый угол. Линия сгиба идет из основания. Нижняя сторона правого угла совмещается с левой боковой стороной.

10.

Отгибаем треугольник.

11.

Возвращаем верхний треугольник.

12.

По намеченной линии отрезаем верхнюю часть.

13.

Расправляем фигурку и получаем правильный шестиугольник.

Шестиугольник (гексагон) из бумаги

Поделки оригами собираются не только из квадратного листа, но и из правильного шестиугольника. Обычно такими поделками являются: шестиконечные звезды, сложные животные (с кучей лапок), красивые орнаменты и снежинки.

Для сборки понадобится:

  • Прямоугольный или квадратный лист бумаги;
  • 5-10 минут свободного времени.

Внимательно смотрим пошаговый видео урок от Сары Адамс и у вас обязательно все получиться. В первой половине правильный шестиугольник (гексагон) собирают из квадратного листа, а во второй из прямоугольного. Выбирайте сами для себя приемлемый способ.

Схема (1 вариант). Нажать для увеличенияСхема (2 вариант). Нажать для увеличения Оцените статью: Поделитесь с друзьями!

Геометрические фигуры схемы


Как сделать объемные геометрические фигуры из бумаги, развертки для склеивания: куба, конуса, схемы и шаблоны для вырезания цилиндра, пирамиды, треугольника

Любому ребенку нравится делать яркие и объемные поделки. Творчество можно объединить с изучением математики и склеить вместе с детьми геометрические фигуры. Ребенок с интересом проведет время, а дополнительно постигнет основы точной науки. Ниже представлено, как начертить карандашом и сделать объемные геометрические фигуры из бумаги, также приведены их правильные названия.

Как сделать объемные геометрические фигуры

Дети познают мир в процессе игры и творчества.

Шаблоны для склеивания

Зачастую школьники задаются вопросом, что можно сделать из бумаги к урокам труда или на выставку. Работы ученика выделятся среди остальных, если это будут сложные трехмерные предметы, рельефные геометрические фигуры, платоновы тела, шаблоны кристаллов и минералов.

Если следовать инструкции, то ученик 5–6 класса сможет без помощи родителей сделать точный додекаэдр или тетраэдр.

Иногда в школе задают логические задания, как из квадрата сделать круг или шестиугольник. Для этого определить центр квадрата, согнув его по диагонали. Точка пересечения прямых — центр квадрата и будущего круга. Исходя из этого, можно наче

Объемные фигуры из картона выкройки. Геометрические фигуры из бумаги своими руками с описанием и фото схем

Любому ребенку нравится делать яркие и объемные поделки. Творчество можно объединить с изучением математики и склеить вместе с детьми геометрические фигуры. Ребенок с интересом проведет время, а дополнительно постигнет основы точной науки. Ниже представлено, как начертить карандашом и сделать объемные геометрические фигуры из бумаги, также приведены их правильные названия.

Как сделать объемные геометрические фигуры

Дети познают мир в процессе игры и творчества. Трехмерные фигуры, выполненные своими руками, помогут познакомиться с удивительной наукой — геометрией.

Примеры трафаретов и шаблонов можно скачать из Интернета и распечатать. Затем все фигуры вырезают и склеивают. Дети старшего возраста могут самостоятельно нарисовать развертку нужной фигуры, малышам помогают родители,.

Геометрические объекты делают из бумаги (белой или цветной), картона. Из последнего материала они получаются плотными и прочными.

Из бумаги

Из картона

Развертки куба

Треугольника

Прямоугольника

Цилиндра

Ромба

Призмы

Схемы для вырезания

Ученикам 1–2 класса демонстрируют в школе простые геометрические фигуры и 3d: квадрат, кубик, прямоугольник. Их несложно вырезать и склеить. Шаблоны развивают мелкую моторику у детей и дают первые представления о геометрии.

Ученики средней школы, которые изучают черчение, делают сложные фигуры: бумажные шестигранники, фигуры из пятиугольников, цилиндры. Из бумаги для детей выполняют домики для кукол, мебель, оригами, замок для маленьких игрушек, маски на лицо (трехмерные называются полигональными).

Конуса

Пирамиды

Шестигранника

Макета с припусками

Параллелепипеда

Трапеции

Овала

Шара

Выкройка шара состоит из 8 частей, 12, 16 или большего количества. Присутствуют и другие способы изображения мяча. Например, из 6 деталей или 4 широких клиньев.

Материал, из чего можно сделать плотный шар — картон или плотная бумага.

Многогранника

Параллелограмма

Шаблоны для склеивания

Зачастую школьники задаются вопросом, что можно сделать из бума

Шестиугольник из квадрата


1.Нижний угол совместите с верхним углом.

 

 

 

 

 

2.Совмещая нижние углы, наметьте среднюю вертикальную линию.

 

 

 

 

3.Наметьте линию, совмещая отмеченные точки.

 

 

 

 

4.Перегиб доходит только до вертикальной линии.

 

 

 

 

5.Согните правую часть фигурки так, чтобы правая отмеченная точка легла на намеченную линию. Сгиб идет из середины нижней стороны фигурки.

 

 

 

 

6.Линия сгиба проходит вдоль левой стороны фигурки.

 

 

 

 

7.Отрежьте верхнюю часть. Линия отреза проходит точно между отмеченными точками.

 

 

 

 

8.Раскройте нижнюю часть.

 

 

 

 

9.Получился правильный шестиугольник.

Развёртки геометрических фигур

Большой выбор развёрток простых геометрических фигур.

Первое знакомство детей с бумажным моделированием всегда начинается с простых геометрических фигур, таких как кубик и пирамида. Не у многих получается склеить кубик с первого раза, иногда требуется несколько дней, чтобы сделать поистине ровный и безупречный куб. Более сложные фигуры цилиндр и конус требуют в несколько раз больше усилий нежели простой кубик. Если вы не умеете аккуратно клеить геометрические фигуры, значит и за сложные модели вам ещё рано браться. Займитесь сами и научите своих детей клеть эти «азы» моделирования по готовым развёрткам.

Для начала я, конечно же, предлагаю научиться клеить обычный кубик. Развёртки сделаны для двух кубиков, большого и маленького. Более сложной фигурой является маленький кубик потому, как клеить его сложнее, чем большой.

Итак, начнём! Скачайте развёртки всех фигур на пяти листах и распечатайте на плотной бумаге. Перед тем, как печатать и клеить геометрические фигуры обязательно ознакомьтесь со статьёй о том, как выбрать бумагу и как вообще правильно вырезать, сгибать и клеить бумагу.

Для более качественной печати советую использовать программу AutoCAD, и даю вам развёртки для этой программы, а также читайте, как распечатывать из автокада. Вырежьте развёртки кубиков с первого листа, по линиям сгиба обязательно проведите иголкой циркуля под железную линейку, чтобы бумага хорошо сгибалась. Теперь можно начинать клеить кубики.

Для экономии бумаги и на всякий пожарный я сделал несколько развёрток маленького кубика, мало ли вам захочется склеить не один кубик или что-то не получится с первого раза. Ещё одна несложная фигура это пирамида, её развёртки найдёте на втором листе. Подобные пирамиды стоили древние египтяне, правда не из бумаги и не таких маленьких размеров 🙂

А это тоже пирамида, только в отличие от предыдущей у неё не четыре, а три грани.

Развёртки трёхгранной пирамиды на первом листе для печати.

И ещё одна забавная пирамидка из пяти граней, её развёртки на 4-ом листе в виде звёздочки в двух экземплярах.

Далее шестигранник, склеить его будет ещё проще, чем пирамиды. Развёртки шестигранника на первом листе.

Более сложная фигура это пятигранник, хотя пятигранник сложнее начертить, нежели склеить.

Развёртки пятигранника на втором листе.

Вот мы и добрались до сложных фигур. Теперь придётся поднапрячься, склеить такие фигуры нелегко! Для начала обычный цилиндр, его развёртки на втором листе.

А это более сложная фигура по сравнению с цилиндром, т.к. в её основании не круг, а овал.

Развёртки этой фигуры на втором листе, для овального основания сделано две запасных детали.

Чтобы аккуратно собрать цилиндр его детали нужно клеить встык. С одной стороны дно можно приклеить без проблем, просто поставьте на стол заранее склеенную трубку, положите на дно кружок и залейте клеем изнутри. Следите, чтобы диаметр трубы и круглого дна плотно подходили друг к другу, без щелей, иначе клей протечёт и всё приклеится к столу. Второй кружок приклеить будет сложнее, поэтому приклейте внутри вспомогательные прямоугольники на расстоянии толщины бумаги от края трубы. Эти прямоугольники не дадут упасть основанию внутрь, теперь вы без проблем приклеете кружок сверху.

Цилиндр с овальным основанием можно клеить также как и обычный цилиндр, но он имеет меньшую высоту, поэтому тут проще вставить внутрь гармошку из бумаги, а наверх положить второе основание и по краю приклеить клеем.

Теперь очень сложная фигура – конус. Его детали на третьем листе, запасной кружок для днища на 4-ом листе. Вся сложность склеивания конуса в его острой вершине, а потом ещё будет очень сложно приклеить дно.

Сложная и одновременно простая фигура это шар. Шар состоит из 12-ти пятигранников, развёртки шара на 4-ом листе. Сначала клеится две половинки шара, а потом обе склеиваются вместе.

Довольно интересная фигура – ромб, её детали на третьем листе.

А теперь две очень похожие, но совершенно разные фигуры, их отличие только в основании.

Когда склеите эти обе фигуры, то не сразу поймёте, что это вообще такое, они получились какие-то совсем невосприимчивые.

Ещё одна интересная фигурка это тор, только он у нас очень упрощён, его детали на 5-ом листе.

И наконец, последняя фигура из равносторонних треугольников, даже не знаю, как это назвать, но фигура похожа на звезду. Развёртки этой фигуры на пятом листе.

На сегодня это всё! Я желаю вам успехов в этой нелёгкой работе!

Два способа сделать шестиугольник из бумаги

Квадрат — одна из наиболее часто используемых форм из бумаги для изготовления фигур оригами, но из прямоугольников, треугольников, пятиугольников, шестиугольников и кругов можно также сделать множество красивых моделей оригами.

Шестиугольник — отличная форма для изготовления цветов оригами и снежинок оригами.

Если все стороны шестиугольника равны, он называется правильным шестиугольником. Правильный шестиугольник легко сделать, сложив и отрезав квадратный лист бумаги.Шестиугольник также можно сделать с помощью циркуля. В этом трехминутном видео вы узнаете, как складывать шестиугольник и как циркуль.

Примеры шестигранных форм, встречающихся в природе, включают соты улья и снежинки.

Фигурки оригами из шестиугольника

На фотографиях ниже представлены модели оригами, сделанные из шестиугольного листа бумаги. Инструкции для этих моделей есть в других сообщениях на сайте Origami Spirit.Чтобы просмотреть один из этих постов и сопутствующий видеоурок, щелкните ссылку под каждой фотографией.

Полевой цветок / Снежинка Процесс складывания шестиугольного оригами цветка, созданного Дэвидом Мартинесом, настолько приятен, что вам захочется повторять его снова и снова. Сделанный из белой бумаги, он похож на снежинку.

Вариант полевого цветка Это мой вариант полевого цветка Давида. Он показывает намек на задний цвет бумаги, в данном случае зеленый, чтобы создать листья под цветком.

. . . . . . . . . .

Помечено как: шестиугольник ролики

.

трехмерных фигур | SkillsYouNeed

На этой странице рассматриваются свойства трехмерных или «твердых» форм.

Двумерная фигура имеет длину и ширину. У трехмерной твердой формы тоже есть глубина. Трехмерные формы по своей природе имеют внутреннюю и внешнюю стороны, разделенные поверхностью. Все физические предметы, к которым можно прикоснуться, трехмерны.

Эта страница охватывает как твердые тела с прямыми сторонами, называемые многогранниками, которые основаны на многоугольниках, так и твердые тела с кривыми, такие как глобусы, цилиндры и конусы.


Многогранники

Многогранники (или многогранники) — это твердые тела с прямыми сторонами. Многогранники основаны на многоугольниках, двухмерных плоских формах с прямыми линиями.

См. Нашу страницу Свойства полигонов для получения дополнительной информации о работе с полигонами.

Многогранники определяются как имеющие:

  • Прямые кромки .
  • Плоские стороны называются гранями .
  • Углы, называемые вершинами .

Многогранники также часто определяются количеством ребер, граней и вершин, которые они имеют, а также тем, имеют ли все их грани одинаковую форму и размер.Как и многоугольники, многогранники могут быть правильными (основанными на правильных многоугольниках) или неправильными (основанными на неправильных многоугольниках). Многогранники также могут быть вогнутыми или выпуклыми.

Один из самых простых и известных многогранников — это куб. Куб — это правильный многогранник, имеющий шесть квадратных граней, 12 ребер и восемь вершин.



Правильные многогранники (Платоновы тела)

Пять правильных тел. — это особый класс многогранников, все грани которых идентичны, причем каждая грань является правильным многоугольником.Платоновы тела:

  • Тетраэдр с четырьмя равносторонними треугольными гранями.
  • Куб с шестью квадратными гранями.
  • Октаэдр с восемью равносторонними треугольными гранями.
  • Додекаэдр с двенадцатью гранями пятиугольника.
  • Икосаэдр с двадцатью равносторонними треугольными гранями.
См. Диаграмму выше для иллюстрации каждого из этих правильных многогранников.
Что такое призма?

Призма — это любой многогранник, у которого есть два совпадающих конца и плоские стороны .Если вы разрежете призму в любом месте по ее длине, параллельно концу, ее поперечное сечение будет одинаковым — вы получите две призмы. Стороны призмы составляют параллелограммов — четырехгранных форм с двумя парами сторон равной длины.

Антипризмы похожи на обычные призмы, их концы совпадают. Однако стороны антипризм состоят из треугольников, а не параллелограммов. Антипризмы могут стать очень сложными.

Что такое пирамида?

Пирамида — это многогранник с основанием многоугольника , который соединяется с вершиной (верхняя точка) прямыми сторонами.

Хотя мы склонны думать о пирамидах с квадратным основанием, подобных тем, что строили древние египтяне, на самом деле они могут иметь любое основание многоугольника, правильное или неправильное. Кроме того, пирамида может иметь вершину в прямом центре своего основания, Правая пирамида , или может иметь вершину вне центра, когда это наклонная пирамида .

Более сложные многогранники

Есть еще много видов многогранников: симметричные и несимметричные, вогнутые и выпуклые.

Архимедовы тела, например , состоят как минимум из двух разных правильных многоугольников.

Усеченный куб (как показано) представляет собой архимедово твердое тело с 14 гранями. 6 граней — правильные восьмиугольники, а остальные 8 — правильные (равносторонние) треугольники. У фигуры 36 ребер и 24 вершины (угла).


Трехмерные формы с кривыми

Твердые фигуры с закругленными или закругленными краями не являются многогранниками. Многогранники могут иметь только прямые стороны.

Многие из окружающих вас объектов будут иметь по крайней мере несколько кривых. В геометрии наиболее распространенными изогнутыми телами являются цилиндры, конусы, сферы и торы (множественное число для тора).

Общие трехмерные формы с кривыми:
Цилиндр Конус
Цилиндр имеет одинаковое поперечное сечение от одного конца до другого. Цилиндры имеют два одинаковых конца в форме круга или овала.Несмотря на то, что цилиндры похожи, цилиндры не являются призмами, поскольку призма имеет (по определению) параллелограмм с плоскими сторонами. Конус имеет круглое или овальное основание и вершину (или вершину). Сторона конуса плавно сужается к вершине. Конус похож на пирамиду, но отличается тем, что конус имеет одну изогнутую сторону и круглое основание.
Сфера Тор
Сфера в форме шара или земного шара представляет собой полностью круглый объект.Каждая точка на поверхности сферы находится на равном расстоянии от центра сферы. Обычный кольцевой тор в форме кольца, шины или бублика образуется путем вращения меньшего круга вокруг большего круга. Существуют также более сложные формы торов.

Площадь

На нашей странице «Расчет площади» объясняется, как вычислить площадь двумерных фигур, и вам необходимо понимать эти основы, чтобы рассчитать площадь поверхности трехмерных фигур.

Для трехмерных форм мы говорим о площади поверхности , чтобы избежать путаницы.

Вы можете использовать свои знания о площади двумерных фигур для вычисления площади поверхности трехмерной формы, поскольку каждая грань или сторона фактически является двумерной формой.

Поэтому вы прорабатываете площадь каждой грани, а затем складываете их вместе.

Как и в случае плоских форм, площадь поверхности твердого тела выражается в квадратных единицах: см 2 , дюймы 2 , м 2 и т. Д.Вы можете найти более подробную информацию о единицах измерения на нашей странице Системы измерения .

Примеры расчета площади поверхности
Куб

Площадь поверхности куба — это площадь одной грани (длина х ширина), умноженная на 6, потому что все шесть граней одинаковы.

Поскольку грань куба представляет собой квадрат, вам нужно выполнить только одно измерение — длина и ширина квадрата, по определению, одинаковы.

Следовательно, одна грань этого куба 10 × 10 см = 100 см 2 .Умножив на 6 количество граней куба, мы находим, что площадь поверхности этого куба равна 600 см 2 .

Другие правильные многогранники

Точно так же площадь поверхности других правильных многогранников (платоновых тел) может быть вычислена, если найти площадь одной стороны и затем умножить ответ на общее количество сторон — см. Схему основных многогранников выше.

Если площадь одного пятиугольника, составляющего додекаэдр, равна 22 см 2 , умножьте это на общее количество сторон (12), чтобы получить ответ 264 см 2 .


Пирамида

Для расчета площади поверхности стандартной пирамиды с четырьмя равными треугольными сторонами и квадратным основанием:

Сначала определите площадь основания (квадрата) длина × ширина.

Затем проработайте площадь одной стороны (треугольник). Измерьте ширину по основанию, а затем высоту треугольника (также известную как наклонная длина) от центральной точки на основании до вершины.

Затем вы можете либо разделить полученный ответ на 2, чтобы получить площадь поверхности одного треугольника, а затем умножить на 4, чтобы получить площадь поверхности всех четырех сторон, либо просто умножьте площадь поверхности одного треугольника на 2.

Наконец, сложите площадь основания и стороны вместе, чтобы найти общую площадь поверхности пирамиды.

Чтобы вычислить площадь поверхности для других типов пирамид, сложите площадь основания (известную как площадь основания) и площадь сторон (боковая площадь), вам может потребоваться измерить стороны по отдельности.

Диаграммы сети

Геометрическая сеть — это двухмерный «узор» для трехмерного объекта. Сетки могут быть полезны при определении площади поверхности трехмерного объекта.На диаграмме ниже вы можете увидеть, как строятся базовые пирамиды. Если пирамида «развернута», у вас остается сеть.

Для получения дополнительной информации о сетевых диаграммах см. Нашу страницу 3D-фигуры и сети .


Призма

Для расчета площади поверхности призмы :

Призмы имеют два конца одинаковые и плоские стороны параллелограмма.

Вычислите площадь одного конца и умножьте на 2.

Для обычной призмы (у которой все стороны одинаковые) вычислите площадь одной из сторон и умножьте на общее количество сторон.

Для призм неправильной формы (с разными сторонами) рассчитайте площадь каждой стороны.

Сложите два ваших ответа (концы × стороны), чтобы найти общую площадь поверхности призмы.


Цилиндр

Пример:
Радиус = 5 см
Высота = 10 см

Чтобы рассчитать площадь поверхности цилиндра , полезно подумать о составных частях формы. Представьте банку сладкой кукурузы — у нее есть верх и низ, оба из которых представляют собой круги.Если отрезать сторону по длине и приплюснуть, получится прямоугольник. Следовательно, вам нужно найти площадь двух кругов и прямоугольника.

Сначала проработайте область одного из кругов.

Площадь круга π (пи) × радиус 2 .

Предполагая радиус 5 см, площадь одной из окружностей равна 3,14 × 5 2 = 78,5 см 2 .

Умножьте ответ на 2, так как есть два круга 157см 2

Площадь боковой стороны цилиндра равна периметру окружности, умноженному на высоту цилиндра.

Периметр равен π x 2 × радиус. В нашем примере 3,14 × 2 × 5 = 31,4

Измерьте высоту цилиндра — в этом примере высота составляет 10 см. Площадь поверхности стороны 31,4 × 10 = 314см 2 .

Общую площадь поверхности можно найти, сложив вместе площади кругов и стороны:

157 + 314 = 471 см 2


Пример:
Радиус = 5 см
Длина наклона = 10 см

Конус

При расчете площади поверхности конуса необходимо использовать длину «склона», а также радиус основания.

Однако вычислить относительно просто:

Площадь круга у основания конуса равна π (пи) × радиус 2 .

В этом примере сумма равна 3,14 × 5 2 = 3,14 × 25 = 78,5 см 2

Площадь боковой части, наклонного участка, можно найти по следующей формуле:

π (пи) × радиус × длина уклона.

В нашем примере сумма равна 3,14 × 5 × 10 = 157 см 2 .

Наконец, добавьте площадь основания к боковой области, чтобы получить общую площадь поверхности конуса.

78,5 + 157 = 235,5 см 2


Теннисный мяч:
Диаметр = 2,6 дюйма

Сфера

Площадь поверхности сферы — это относительно простое разложение формулы для площади круга.

4 × π × радиус 2 .

Для сферы часто проще измерить диаметр — расстояние по сфере. Затем вы можете найти радиус, равный половине диаметра.

Диаметр стандартного теннисного мяча 2.6 дюймов. Следовательно, радиус составляет 1,3 дюйма. Для формулы нам понадобится радиус в квадрате. 1,3 × 1,3 = 1,69.

Следовательно, площадь теннисного мяча составляет:

4 × 3,14 × 1,69 = 21,2264 дюйма 2 .


Пример:
R (большой радиус) = 20 см
r (малый радиус) = 4 см

Тор

Чтобы вычислить площадь поверхности тора , вам нужно найти два значения радиуса.

Большой или большой радиус (R) измеряется от середины отверстия до середины кольца.

Малый или малый радиус (r) измеряется от середины кольца до внешнего края.

На схеме показаны два вида примера тора и способы измерения его радиусов (или радиусов).

Расчет площади поверхности состоит из двух частей (по одной для каждого радиуса). Расчет одинаков для каждой детали.

Формула: площадь поверхности = (2πR) (2πr)

Для определения площади поверхности примера тора.

(2 × π × R) = (2 × 3.14 × 20) = 125,6

(2 × π × r) = (2 × 3,14 × 4) = 25,12

Умножьте два ответа, чтобы найти общую площадь поверхности тора в примере.

125,6 × 25,12 = 3155,072 см 2 .


Заполнение твердого тела: объем

Для трехмерных фигур вам может также потребоваться знать, какой объем у них есть.

Другими словами, если вы наполните их водой или воздухом, сколько наполнения вам потребуется?

Это описано на нашей странице Расчет объема .

.

Основные трехмерные формы

На трехмерном уровне существует пять основных форм: сфера, конус, цилиндр, тор и куб. Все трехмерные объекты могут быть построены из частей этих пяти форм. Вещи с плоскими поверхностями и резкими изменениями плоскости поверхности, такие как углы дома или шестиугольная головка болта, относятся к кубам. Изогнутые плоскости, такие как округлые подлокотники дивана или рябь флага, относятся к конусам или цилиндрам.Неровности, вмятины и холмы относятся к сферам. Барбекю состоит из сфер и цилиндров; почтовый ящик — это полуцилиндр и куб. Закругленный круглый обод чашки относится к тору, который также является основной формой спиральной змеи или звеньев цепи.

Изучая основные формы, вы также должны учитывать, как они проявляются в негативе. Например, кратер — это отрицательная сфера; колея или желоб — отрицательный цилиндр; пустой прямоугольный бассейн — часть отрицательного куба.

Сфера
Сфера — это самая легкая из форм для рисования, потому что независимо от угла обзора она всегда рисуется как круг. Почти чистые примеры сферических форм — это апельсины, луна, футбольные мячи и пузыри.

Th e sph e r e нарисовано в линию i s simp l y a ci rcle .

Конус
Следующим по простоте рисования является конус. Это просто буква V с кружком между концами. Если смотреть под углом, круг представляет собой эллипс. Линия, проведенная от центра круглого основания до точки буквы V, является средней линией конуса. Если основание конуса перпендикулярно средней линии, стороны конуса отрисовываются от узких концов эллипса. Если нет, то основание конуса будет выглядеть как будто срезанное под углом. Почти чистыми примерами конических форм являются кончики карандашей, рождественские елки, мачты кораблей и шляпы ведьм.

Конус изображен в виде треугольника с эллипсом на одном конце. Линия, проведенная от середины эллипса до точки конуса, называется средней линией. Если линия, проведенная через самую широкую часть эллипса, не перпендикулярна средней линии, конус не будет стоять прямо.

C o m ple x формы могут быть установлены e n as c o mbin a ция s из t he b a s i c fo r ms.

Цилиндр
Цилиндр нарисован с параллельными линиями для сторон и окружностями между параллельными линиями. (Как и в случае с конусом, круги становятся эллипсами, если смотреть под углом.) Если верх и низ цилиндра перпендикулярны его сторонам, параллельные линии проводятся от узких концов эллипсов. Линия от центра одного эллипса до центра другого — это средняя линия цилиндра. Линия, проведенная через самую широкую часть эллипса, будет перпендикулярна средней линии цилиндра.Важно помнить, что, хотя верхняя и нижняя поверхности цилиндра параллельны, они не изображаются как одинаковые эллипсы. Чем ближе одна из этих поверхностей НАХОДИТСЯ на уровне ваших глаз (также известная как линия горизонта), тем уже будет эллипс; чем дальше от уровня глаза , тем округлее будет эллипс. (Подробнее об этом см. В главе об эллиптической перспективе.) У укороченного в ракурсе цилиндра — цилиндра, который сужается с одного конца, чтобы создать иллюзию проекции или расширения в пространство — будет казаться, что его стороны не параллельны, потому что они нарисовано в перспективе.В перспективе кажется, что параллельные линии сходятся, уходя в пространство. Почти чистыми примерами цилиндрических форм являются банки, ручки от метел и карнизы для штор.

A c y lin d e r i s d ra w na s a p a ir of p ara llel li n e s w iith an ellipse at e a c he nd b e tween t h e pa r a llel line s . T he elli ps e n eare r to y ou r eye l e vel will a ppe a r n a rr o wer th an o ne fa r th e r на расстоянии от уровня ваших глаз .

На этом рисунке цилиндр №1 слева изображен правильно, а три других — неправильно. В № 2 верхний и нижний эллипсы одинаковы, но этого не может быть, потому что они видны на разных уровнях. Цилиндр № 3 неправильный, потому что, даже если он находится на плоской поверхности, нижнюю часть не следует рисовать плоской, потому что нижняя часть самой формы изогнута. В цилиндре №4 верхний эллипс должен быть уже, потому что он ближе к уровню наших глаз, чем нижний эллипс.

Тор
Тор имеет форму бублика. Если смотреть сверху, это всего лишь два круга, один внутри другого. С точки зрения трех четвертей середина внешнего края представляет собой среднюю часть или эллипс; концы — это части двух маленьких кружков. Внутренняя часть тора (отверстие в бублике) изображена двумя дугами, которые образуют яйцевидную (овальную) форму с заостренными концами. Почти чистые примеры тора — рогалик, свернутый в спираль садовый шланг или змея и звено цепи.

Тор — это , нарисованный либо как два эллипса, один внутри другого, либо как эллипс с двумя противоположными дугами, образующими заостренный эллипс t ed эллипс внутри. Видно (сбоку тор, образуемый , две параллельные мелкие части с половиной Окружность на с обоих концов.

Куб
Куб — это коробка с шестью квадратными сторонами. Чистые примеры кубиков — игральные кости, шкафы для хранения документов, навесы и стиральные машины.Куб — это самая сложная форма для правильного рисования, потому что она предполагает линейную перспективу. Более подробное объяснение линейной перспективы будет представлено позже в этой книге, но на следующих страницах вы найдете некоторые основные концепции.

Куб представляет собой шестигранную форму ; ea c h сторона — плоский квадрат . Это mo s t сложная из пяти основных форм для рисования, потому что для этого требуется понимание линейной перспективы .

© Авторские права Билл Мартин 2007-2014 • PO Box 511, Albion, CA 95410 • [email protected]

.

Глава 6 — Молекулярная структура

Введение

Метод построения структур Льюиса из простых молекул и ионов был представлен в главе 5. В этой главе мы покажем, как использовать структуры Льюиса для определения структурных и связывающих свойств молекул и ионов с ковалентными связями.

6.1 Молекулярные формы

Введение
Молекула — это трехмерная структура, и многие из ее свойств, как химических, так и физических, определяются этой структурой.Структура Льюиса молекулы — это двумерное представление, которое можно использовать для получения информации о ее трехмерной структуре. Определение формы молекулы по ее структуре Льюиса — тема этого урока.
Предварительные требования
Цели
  • Определите количество электронных областей вокруг атома.
  • Оцените относительную силу взаимодействий lp-lp, lp-bp и bp-bp.
  • Назовите молекулярные формы простых молекул, которые содержат единственный центральный атом.
  • Используйте линии, клинья и штрихи, чтобы представить трехмерную структуру атома с четырьмя электронными областями.
  • Различайте модель с мячом и клюшкой и модель, заполняющую пространство.
6.1-1. Электронные области

Одна электронная группа или область может быть неподеленной парой, одинарной связью, двойной связью или тройной связью.

Подобно тому, как двухмерный план предоставляет информацию о трехмерном здании, структура молекулы Льюиса предоставляет информацию о трехмерной структуре молекулы. Переход от двумерной к трехмерной структуре осуществляется с помощью модели отталкивания электронных пар валентных оболочек (VSEPR). VSEPR основан на предположении, что «электронные группы» или «электронные области» вокруг атома занимают положения, которые минимизируют отталкивание между ними.Каждое из следующих элементов представляет собой одну электронную группу или область.
  • одинокая пара
  • одинарная облигация
  • двойная связь
  • тройная связь
Двойная и тройная связи каждая представляет собой одну электронную группу, потому что все электронные пары в связях ограничены областью пространства между связанными атомами.Таким образом, электронные пары в области связи не могут разойтись, но они могут двигаться как единая электронная группа, чтобы минимизировать свое взаимодействие с другими электронными группами. Атомы, подчиняющиеся правилу октетов, могут иметь только две, три или четыре электронных группы.
6.1-2. Упражнение
по подсчету электронных областей Упражнение 6.1:

Каково количество электронных областей вокруг атома серы в каждом из следующих элементов?

6.1-3. VSEPR видео
  • Просмотр видео
  • Просмотрите видео в этом окне, нажав кнопку воспроизведения.
  • Используйте элементы управления видео для просмотра видео в полноэкранном режиме.
  • Просмотрите видео в текстовом формате, прокрутив вниз.
6.1-4. Сводка VSEPR
Итак, три возможных ориентации электронных групп вокруг атома, подчиняющиеся правилу октетов, следующие.
6.1-5. Связующие уголки

Если все электронные группы вокруг центрального атома не идентичны, предсказанные валентные углы являются приблизительными.

Углы между электронными группами, показанные на рисунке 6.1, применимы только к ситуациям, когда все четыре электронные группы одинаковы, что не так уж и часто. Таким образом, углы между электронными группами вокруг атома, который подчиняется правилу октетов, будут точно 180 ° для двух групп, но будут близки только к 120 ° или 109 ° для трех или четырех групп, если все группы не будут одинаковыми. Отклонение от предсказанных углов может быть вызвано различиями в размерах связанных атомов, поскольку большие атомы имеют тенденцию расходиться, чтобы избежать « столкновения » друг с другом, а также различиями между взаимодействиями неподеленных пар и связывающих пар, поскольку неподеленные пары более диффузны. чем неподеленные пары, поэтому они больше и другие области электронов имеют тенденцию удаляться от них.Ниже приведены относительные силы взаимодействий.

неподеленная пара-одиночная пара> неподеленная пара, соединяющая пару> соединяющая пара, соединяющая пара

Связующий угол — это угол, образованный пересечением двух связей. Обычно они уменьшаются по сравнению со значениями, приведенными на рисунке 6.1, за счет взаимодействия с одиночными парами. В результате пары соединений удаляются от неподеленных пар, приближаясь друг к другу. Отклонение от прогнозируемых углов увеличивается с увеличением количества неподеленных пар.Используйте следующее, чтобы предсказать относительные углы связи.
  • 1

    Определите количество электронных групп вокруг атома, где образуется угол.
  • 2

    Если неподеленных пар нет и атомы примерно одинакового размера, угол будет 180 °, 120 ° или 109 °.
  • 3

    Если есть одиночные пары, углы уменьшаются от значений, предсказанных на шаге 2. Отклонение больше для двух неподеленных пар, чем для одной.
Мы укажем, что валентный угол отклоняется от предсказанного значения с помощью символа «~» перед углом. Таким образом, перед всеми валентными углами вокруг атомов с неподеленными парами стоит символ «~».
6.1-6. Упражнение по заказу углов скрепления
Упражнение 6.2: Рассмотрим структуры Льюиса для CF 4 , SO 3 , SO 2 , NF 3 и OF 2 , которые приведены ниже. Обратите внимание, что показаны только неподеленные пары вокруг центрального атома.

Укажите молекулу с большими углами связи в каждой паре.

.

Исчисление III — трехмерное пространство

Онлайн-заметки Павла

Примечания Быстрая навигация Скачать

  • Перейти к
  • Примечания
  • Проблемы с практикой
  • Проблемы с назначением
  • Показать / Скрыть
  • Показать все решения / шаги / и т. Д.
  • Скрыть все решения / шаги / и т. Д.
  • Разделы
  • Трехмерная система координат
  • Разделы
  • Частные производные
  • Классы
  • Алгебра
  • Исчисление I
  • Исчисление II
  • Исчисление III
  • Дифференциальные уравнения
  • Дополнительно
  • Алгебра и триггерный обзор
  • Распространенные математические ошибки
  • Праймер комплексных чисел
  • Как изучать математику
  • Шпаргалки и таблицы
  • Разное
  • Свяжитесь со мной
  • Справка и настройка MathJax
  • Мои студенты
  • Заметки Загрузки
  • Полная книга
  • Текущая глава
  • Practice Problems Загрузок
  • Полная книга — Только проблемы
  • Полная книга — Решения
  • Текущая глава — Только проблемы
  • Текущая глава — Решения
  • Проблемы с назначением Загрузок
  • Полная книга
  • Текущая глава
  • Прочие товары
  • Получить URL для загружаемых элементов
  • Распечатать страницу в текущем виде (по умолчанию)
  • Показать все решения / шаги и распечатать страницу
  • Скрыть все решения / шаги и распечатать страницу
  • Дом
  • Классы
  • Алгебра
    • Предварительные мероприятия
      • Целые экспоненты
      • Рациональные экспоненты
      • Радикалы
      • Полиномы
      • Факторинговые многочлены
      • Рациональные выражения
      • Комплексные числа
    • Решение уравнений и неравенств
      • Решения и наборы решений
      • Линейные уравнения
      • Приложения линейных уравнений
      • Уравнения с более чем одной переменной
      • Квадратные уравнения — Часть I
      • Квадратные уравнения — Часть II
      • Квадратные уравнения: сводка
      • Приложения квадратных уравнений
      • Уравнения, сводимые к квадратичным в форме
      • Уравнения с радикалами
      • Линейные неравенства
      • Полиномиальные неравенства
      • Рациональные неравенства
      • Уравнения абсолютных значений
      • Неравенства абсолютных значений
    • Графики и функции
      • Графики
      • Строки
      • Круги
      • Определение функции
      • Графические функции
      • Комбинирование функций
      • Обратные функции
    • Общие графы
      • Прямые, окружности и кусочные функции
      • Параболы
      • Эллипсы
      • Гиперболы
      • Разные функции
      • Преобразования
      • Симметрия
      • Рациональные функции
    • Полиномиальные функции
      • Делящие многочлены
      • Нули / корни многочленов
      • Графические полиномы
      • Нахождение нулей многочленов
      • Частичные дроби
    • Экспоненциальные и логарифмические функции
      • Экспоненциальные функции
      • Логарифмических функций
      • Решение экспоненциальных уравнений
      • Решение логарифмических уравнений
      • Приложения
    • Системы уравнений
      • Линейные системы с двумя переменными
      • Линейные системы с тремя переменными
      • Расширенные матрицы
      • Подробнее о расширенной матрице
      • Нелинейные системы
  • Исчисление I
    • Обзор
      • Функции
      • Обратные функции
      • Триггерные функции
      • Решение триггерных уравнений
.

% PDF-1.4 % 121 0 объект > endobj xref 121 30 0000000016 00000 н. 0000000951 00000 п. 0000001046 00000 н. 0000001990 00000 н. 0000002148 00000 п. 0000002372 00000 н. 0000003446 00000 н. 0000004521 00000 н. 0000004743 00000 н. 0000004967 00000 н. 0000006022 00000 н. 0000009211 00000 п. 0000009435 00000 н. 0000009669 00000 н. 0000010747 00000 п. 0000011822 00000 п. 0000012025 00000 п. 0000052011 00000 п. 0000052089 00000 п. 0000092171 00000 п. 0000092248 00000 п. 0000092363 00000 п. 0000092477 00000 п. 0000107644 00000 п. 0000107758 00000 н. 0000107871 00000 п. 0000118641 00000 н. 0000120258 00000 н. 0000001197 00000 н. 0000001968 00000 н. трейлер ] >> startxref 0 %% EOF 122 0 объект > endobj 123 0 объект > / Кодировка> >> / DA (/ Helv 0 Tf 0 г) >> endobj 149 0 объект > ручей H | HSQǏ {N̠hci1TTMN6 k Дв # X 6u- ̜ (Ͻ {

.

Многоугольников вкратце

Мы очень давно занимаемся треугольниками и четырехугольниками. Но в этих геометрических джунглях существует гораздо больше форм, чем просто трех- и четырехгранные животные. Есть фигуры с пятью, шестью, семью и даже сорока двумя сторонами. И нам не пойдет на пользу держать головы под землей, как страусы, делая вид, что их не существует.

Если вы еще не догадались, полигонов — это замкнутые двумерные фигуры, состоящие только из отрезков прямых линий.Таким образом, треугольники и четырехугольники являются примерами многоугольников, но углы, кривые и окружности не обязательны.

Что касается именования полигонов, мы обычно называем их греческими префиксами (например, «три-» и «окто-»), которые соответствуют количеству их сторон. Конечно, после определенного момента это утомляет. Вот почему после 12 сторон мы просто называем их 13-угольными, 28-угольными и 146-угольными. Легче запоминать и легче писать. Нам это нравится.

Стороны Название многоугольника
3 треугольник
4 четырехугольник
5 пятиугольник
6
шестиугольник 7 семиугольник
8 восьмиугольник
9 десятиугольник
10 десятиугольник
11 ундекагон
12 двенадцатигранник
n n -угольник


Как и четырехугольники, эти различные типы многоугольников также имеют диагонали.(За исключением треугольников, неважно, насколько сильно они или ). Но сколько именно диагоналей будет у этих многоугольников?

Начнем с рисования непересекающихся диагоналей . У четырехугольника может быть только одна такая диагональ. Рисование в другом будет пересекаться с первым, и их не зря называют «непересекающимися».

Если мы возьмем пятиугольник, мы можем нарисовать две диагонали, которые не пересекаются. Ключ состоит в том, чтобы нарисовать ровно столько, чтобы разделить многоугольник на треугольники.

Когда мы смотрим на шестиугольники, мы можем разбить их на 4 различных треугольника, используя любые 3 непересекающиеся диагонали.

Когда мы переходим к семиугольникам, мы можем иметь 4 непересекающиеся диагонали. Это может быть какое-то странное математическое вуду … или это может быть особая связь между многоугольниками и треугольниками? По сути, это сводится к тому, что выпуклый многоугольник со сторонами n можно разделить на n — 2 различных треугольника, на n — 3 непересекающиеся диагонали.

Если мы вернемся к нашему шведскому столу многоугольников, мы знаем, что треугольник имеет внутренние углы, которые в сумме составляют 180 °. Четырехугольник имеет внутренние углы в сумме 360 °. Как оказалось, пятиугольники имеют внутренние углы 540 °, а шестиугольники имеют внутренние углы 720 °.

Больше математического вуду? Не так много. Многоугольник со сторонами n имеет внутренние углы, которые в сумме составляют ( n — 2) × 180 °.

Пример задачи

Используя треугольники, определите общую меру внутренних углов четырехугольника.

Нарисуем одну диагональ, соединяющую B и D через четырехугольник ABCD . Получаем два треугольника: Δ ABD и Δ BCD . Мера внутреннего ABC — это просто сумма мер ∠1 и 2. Измерение ADC представляет собой сумму измерений 3 и 4. Между тем, BAD и BCD являются общими для треугольников и четырехугольника.

Когда мы складываем углы обоих треугольников вместе, получаем 180 ° + 180 ° = 360 °.Это точно подтверждает то, что мы уже знали. Так держать, нам.

Если бы мы сделали то же самое для пятиугольника, мы бы разбили пятиугольник на три треугольника, каждый из которых дает 180 ° к сумме внутренних углов пятиугольника. Добавление каждого из этих вкладов дает нам 540 °. Это также согласуется с нашей формулой, поскольку ( n — 2) × 180 °, когда n = 5, равно (5 — 2) × 180 ° = 3 × 180 ° = 540 °.

До сих пор мы придерживались треугольников и четырехугольников. Теперь, когда мы расширяем наш геометрический вкус, нам следует расширить наш словарный запас.

Правильный многоугольник — это многоугольник, стороны которого равны, а углы равны. Итак, правильный треугольник — это хорошо знакомый равносторонний треугольник. Правильный четырехугольник нам больше известен как квадрат. Это потому, что единственный четырехугольник, который одновременно является равносторонним и , является квадратом.

Мы можем считать стороны, мы можем считать углы и мы можем считать диагонали. (Вы знаете, кто любит считать? Счет.)

Количество непересекающихся диагоналей, как мы уже знаем, равно n — 3, где n — количество сторон многоугольника.Но как насчет общего количества диагоналей, даже если они и пересекаются? Что ж, каждая вершина может иметь те же самые диагонали n — 3, но мы будем считать каждую диагональ дважды (по одной для каждой вершины), поэтому мы должны разделить это число на 2. В итоге мы получим формулу для числа диагоналей в n -угольник.

Пример задачи

Сколько градусов в восьмиугольнике? Сколько может быть непересекающихся и пересекающихся диагоналей?

У восьмиугольников 8 сторон, поэтому n = 8.Теперь все, что нам нужно сделать, это применить наши формулы (и вспомнить, что означает каждая из них). Начнем с количества градусов.

( n — 2) × 180 ° =
(8 — 2) × 180 ° =
6 × 180 ° =
1080 °

Теперь о количестве непересекающихся и пересекающихся диагоналей. Мы просто должны помнить, какая формула есть какая.

n — 3 =
8 — 3 =
5

=

=

4 × 5 =
20

Не , что сложно, учитывая, что непересекающихся диагоналей всегда должно быть меньше, чем пересекающихся .Таким образом, восьмиугольник имеет в общей сложности 1080 ° внутренних углов, 5 непересекающихся диагоналей и 20 общих диагоналей.

И последний совет: не ешьте желтый снег.

Ладно, правда. И последний совет: если вы обнаружите, что имеете дело с массивным многоугольником с гораздо большим количеством сторон, чем вы можете обработать, попробуйте разбить его на те, с которыми вы можете справиться. По сути, если вы можете разбить многоугольник на треугольники и четырехугольники, доверяйте Nike, а просто сделайте это . Если серьезно. это сделает вашу жизнь проще.

Построение вписанных фигур (равносторонние треугольники, квадраты, правильные шестиугольники): CCSS.Math.Content.HSG-CO.D.13 — Common Core: High School

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Как физика придает природе структуру

Как это делают пчелы? Соты, в которых они хранят свой янтарный нектар, — это чудо точной инженерии, массив ячеек в форме призмы с идеально шестиугольным поперечным сечением.Восковые стенки имеют очень точную толщину, ячейки слегка наклонены от горизонтали, чтобы предотвратить вытекание вязкого меда, а вся соты выровнены с магнитным полем Земли. Тем не менее, эта структура создается без какого-либо плана или предвидения, когда многие пчелы работают одновременно и каким-то образом координируют свои усилия, чтобы избежать несовпадения клеток.

Древнегреческий философ Папп Александрийский считал, что пчелы должны быть наделены «определенной геометрической предусмотрительностью.«И кто мог дать им эту мудрость, кроме Бога? Согласно Уильяму Кирби в 1852 году, пчелы — это «математики с небесами». Чарльз Дарвин не был так уверен, и он провел эксперименты, чтобы установить, способны ли пчелы строить идеальные соты, используя только развитые и унаследованные инстинкты, как предполагает его теория эволюции.

СИЛЫ В РАБОТЕ: Пчелы, кажется, развили способность делать идеально шестиугольные клетки из мягкого воска, который они выделяют. Однако некоторые исследователи полагают, что поверхностного натяжения в мягком воске может быть достаточно, чтобы придать клеткам форму, почти так же, как он формирует пузыри в пузырчатой ​​пленке.Grafissimo / Getty

Но почему шестиугольники? Это простой вопрос геометрии. Если вы хотите упаковать ячейки, которые идентичны по форме и размеру, чтобы они заполняли всю плоскую плоскость, будут работать только три правильные формы (со всеми сторонами и углами): равносторонние треугольники, квадраты и шестиугольники. Из них шестиугольные ячейки требуют наименьшей общей длины стены по сравнению с треугольниками или квадратами той же площади. Поэтому вполне логично, что пчелы выберут шестиугольники, поскольку изготовление воска требует затрат энергии, и они захотят использовать как можно меньше — так же, как строители могут захотеть сэкономить на стоимости кирпичей.Это поняли в 18 веке, и Дарвин заявил, что шестиугольные соты «абсолютно идеальны с точки зрения экономии труда и воска».

Дарвин считал, что естественный отбор наделил пчел инстинктом для создания этих восковых камер, преимущество которых заключалось в том, что они требовали меньше энергии и времени, чем камеры с другими формами. Но даже несмотря на то, что пчелы, кажется, обладают специальными способностями к измерению углов и толщины стенок, не все согласны с тем, насколько они должны на них полагаться.Это потому, что создание гексагональных массивов ячеек — это то, чем природа все равно занимается.

УСТАНОВКА: Один слой или «плот» пузырьков состоит в основном из шестиугольных пузырьков, хотя не все из них являются идеальными шестиугольниками. Есть некоторые «дефекты» — пузыри с пятью или семью сторонами. Тем не менее, все стыки стенок пузыря тройные, пересекающиеся под углами, близкими к 120 градусам. Шебеко / Shutterstock Также по физике
Жизнь — это коса в пространстве-времени

Макс Тегмарк

«Простите, но сколько времени?» Я предполагаю, что тебе нравится я виновен в том, что задал этот вопрос, как если бы было очевидно, что такая вещь, как время.Тем не менее, вы, вероятно, никогда не подходили к незнакомцу и … ПОДРОБНЕЕ

Если вы надуваете слой пузырьков на поверхности воды — так называемый «плот с пузырьками» — пузырьки становятся шестиугольными или почти таковыми. Вы никогда не найдете плот из квадратных пузырей: если четыре стенки пузыря сходятся вместе, они мгновенно превращаются в соединения из трех стен с более или менее равными углами в 120 градусов между ними, как в центре символа Mercedes-Benz.

Очевидно, нет агентов, которые формируют эти плоты, как пчелы со своими сотами.Все, что руководит закономерностью, — это законы физики. У этих законов, очевидно, есть определенные предпочтения, такие как смещение в сторону трехстороннего соединения стенок пузыря. То же самое и с более сложными пенами. Если вы складываете пузыри в трех измерениях, продувая соломинку в таз с мыльной водой, вы увидите, что когда стенки пузыря встречаются в вершине, это всегда четырехстороннее соединение с углами между пересекающимися пленками, примерно равными примерно 109 градусы — угол, относящийся к четырехгранному геометрическому тетраэдру.

BUBBLE VISION: Сложные глаза насекомых расположены гексагонально, как пузыри на плоту пузырей, хотя на самом деле каждая грань представляет собой линзу, соединенную с длинной тонкой клеткой сетчатки под ней. Структуры, которые образованы кластерами биологических клеток, часто имеют формы, управляемые во многом теми же правилами, что и пена и пузырчатые плотики — например, всего три клеточные стенки встречаются в любой вершине. Микроскопическая структура фасеток глаза мухи — помимо того, что здесь видно — является одним из лучших примеров.Каждая грань содержит кластер из четырех светочувствительных ячеек, которые имеют ту же форму, что и кластер из четырех обычных пузырьков. Tomatito / Shutterstock

Что определяет эти правила соединения мыльной пленки и формы пузырьков? Природа заботится об экономии даже больше, чем пчелы. Пузырьки и мыльные пленки состоят из воды (с оболочкой из молекул мыла), а поверхностное натяжение на поверхности жидкости дает ей как можно меньшую площадь. Вот почему капли дождя имеют сферическую (более или менее) форму при падении: сфера имеет меньшую площадь поверхности, чем любая другая форма с таким же объемом.По той же причине на восковом листе капельки воды собираются в маленькие бусинки.

Это поверхностное натяжение объясняет структуру пузырьков и пен. Пена будет стремиться найти структуру с наименьшим общим поверхностным натяжением, что означает наименьшую площадь стены из мыльной пленки. Но конфигурация пузырьковых стен также должна быть механически стабильной: буксиры в разных направлениях на стыке должны идеально уравновешиваться, точно так же, как силы должны быть уравновешены в стенах собора, если здание собирается устоять.Трехстороннее соединение в пузырчатой ​​пластине и четырехстороннее соединение в пене — это конфигурации, которые обеспечивают этот баланс.

Но те, кто думают (как и некоторые), что соты — это просто затвердевший пузырек из мягкого воска, могут затруднить объяснение того, как такой же шестиугольный массив клеток встречается в гнездах бумажных ос, которые строят не из воска, а из пережеванные комки волокнистой древесины и стебли растений, из которых они делают своего рода бумагу. Поверхностное натяжение здесь не только мало влияет, но также кажется очевидным, что разные типы ос имеют разные унаследованные инстинкты в отношении своего архитектурного дизайна, которые могут значительно отличаться от одного вида к другому.

ФОРМИРОВАНИЕ КАПЛИ: Когда вода попадает на водоотталкивающую поверхность, она может распадаться на капли. Форма этих капель определяется поверхностным натяжением, которое придает им примерно сферическую форму, а также силой тяжести (которая сглаживает каплю на горизонтальной поверхности) и силами, действующими между водой и подстилающей твердой поверхностью. Если эти последние силы достаточно сильны, капли втягиваются в блины в форме линз. А если поверхность не обладает сильными водоотталкивающими свойствами, капли могут растекаться в плоскую гладкую пленку.Слева вверху: Стучелова, Куттельвасерова / Shutterstock; Справа вверху: Ольгиша / Shutterstock; Внизу: Pitiya Phinjongsakundit / Shutterstock

Хотя геометрия стыков мыльной пленки и продиктована взаимодействием механических сил, она не говорит нам, какой будет форма пены. Типичная пена содержит многогранные ячейки самых разных форм и размеров. Присмотритесь, и вы увидите, что их края редко бывают идеально прямыми; они немного изогнуты. Это потому, что давление газа внутри ячейки или пузыря увеличивается по мере того, как пузырек становится меньше, поэтому стенка маленького пузыря рядом с большим пузырем будет немного выпирать наружу.Более того, некоторые грани имеют пять сторон, некоторые — шесть, а некоторые — всего четыре или даже три. При небольшом изгибе стенок все эти формы могут иметь четырехсторонние соединения, близкие к «четырехгранному» расположению, необходимому для механической устойчивости. Таким образом, формы ячеек обладают некоторой гибкостью (буквально). Пены, подчиняющиеся геометрическим правилам, довольно беспорядочные.

Предположим, что вы можете сделать «идеальную» пену, в которой все пузырьки имеют одинаковый размер. Какова же тогда идеальная форма ячейки, при которой общая площадь стенок пузыря будет как можно меньше, а требования к углам стыков будут удовлетворены? Это обсуждалось в течение многих лет, и долгое время считалось, что идеальной формой ячейки является 14-гранный многогранник с квадратными и шестиугольными гранями.Но в 1993 году была обнаружена несколько более экономичная, хотя и менее упорядоченная структура, состоящая из повторяющейся группы из восьми различных форм ячеек. Этот более сложный узор послужил источником вдохновения для пенистого дизайна плавательного стадиона Олимпийских игр 2008 года в Пекине.

Правила формы ячеек в пеноматериалах также управляют некоторыми узорами, наблюдаемыми в живых клетках. Мало того, что сложный глаз мухи показывает ту же гексагональную упаковку граней, что и пузырьковый плот, но и светочувствительные клетки в каждой из отдельных линз также сгруппированы в группы по четыре, которые выглядят точно так же, как мыльные пузыри.У мутантных мух с более чем четырьмя такими клетками в кластере расположение также более или менее идентично тому, которое могло бы быть у пузырей.

ИСПОЛЬЗОВАНИЕ ПУЗЫРЬКОВ: Пузырьки и пена используются в природе. Здесь обыкновенная фиолетовая улитка висит на поверхности моря с плавучего плота, сделанного из пузырей, покрытых слизью. Это позволяет улитке питаться маленькими существами, живущими на поверхности воды. Дорлинг Киндерсли

Из-за поверхностного натяжения мыльная пленка, натянутая на проволочную петлю, растягивается, как упругая мембрана батута.Если проволочный каркас изгибается, пленка также изгибается с элегантным контуром, который автоматически подсказывает вам наиболее экономичный с точки зрения материала способ покрыть пространство, ограниченное рамкой. Это может показать архитектору, как сделать крышу сложной конструкции, используя наименьшее количество материала. Однако во многом благодаря красоте и элегантности этих так называемых «минималистичных поверхностей», а также из-за их экономичности такие архитекторы, как Фрей Отто, использовали их в своих зданиях.

Эти поверхности минимизируют не только их площадь поверхности, но и их общую кривизну.Чем круче изгиб, тем больше кривизна. Кривизна может быть положительной (выпуклости) или отрицательной (провалы, впадины и седла). Следовательно, криволинейная поверхность может иметь нулевую среднюю кривизну до тех пор, пока положительные и отрицательные стороны компенсируют друг друга.

Таким образом, лист может иметь большую кривизну, но при этом иметь очень маленькую или даже не иметь средней кривизны. Такая минимально изогнутая поверхность может разделить пространство на упорядоченный лабиринт проходов и каналов — сеть. Они называются периодическими минимальными поверхностями.(Периодичность просто означает структуру, которая идентично повторяется снова и снова, или, другими словами, регулярный образец.) Когда такие закономерности были обнаружены в 19 веке, они казались просто математической диковинкой. Но теперь мы знаем, что природа их использует.

Клетки многих различных типов организмов, от растений до миног и крыс, содержат мембраны с подобными микроскопическими структурами. Никто не знает, для чего они нужны, но они настолько широко распространены, что справедливо предположить, что они играют какую-то полезную роль.Возможно, они изолируют один биохимический процесс от другого, избегая перекрестных помех и помех. Или, может быть, они просто эффективный способ создания большого количества «рабочей поверхности», поскольку многие биохимические процессы происходят на поверхности мембран, куда могут быть встроены ферменты и другие активные молекулы. Какова бы ни была его функция, для создания такого лабиринта не требуются сложные генетические инструкции: законы физики сделают это за вас.

У некоторых бабочек, таких как европейская зеленая прическа и изумрудное сердце крупного рогатого скота, есть чешуйки крыльев, содержащие упорядоченный лабиринт из прочного материала, называемого хитином, в форме определенной периодической минимальной поверхности, называемой гироидом.Интерференция между световыми волнами, отражающимися от регулярных массивов гребней и других структур на поверхности чешуек крыла, приводит к исчезновению некоторых длин волн, то есть некоторых цветов, в то время как другие усиливают друг друга. Итак, здесь узоры служат средством создания цвета животных.

МИНЕРАЛЬНАЯ СЕТКА: Филигранные пористые скелеты губок, такие как цветочная корзина Венеры, представляют собой формы «замороженной пены», в которой минерал образует соединения и пересечения пузырьковидных мягких тканей.Дмитрий Григорьев / Shutterstock

Скелет морского ежа Cidaris rugosa представляет собой пористую сетку, имеющую форму периодической минимальной поверхности другого типа. На самом деле это экзоскелет, расположенный за пределами мягких тканей организма, защитная оболочка, из которой вырастают опасно выглядящие шипы из того же минерала, что и мел и мрамор. Открытая решетчатая структура означает, что материал прочный, но не слишком тяжелый, как пенопласт, используемый для строительства самолетов.

Чтобы создать упорядоченные сети из твердых, жестких минералов, эти организмы, очевидно, создают форму из мягких гибких мембран, а затем кристаллизуют твердый материал внутри одной из взаимопроникающих сетей.Другие существа могут создавать таким образом упорядоченную минеральную пену для более сложных целей. Из-за того, как свет отражается от элементов узорчатой ​​структуры, такие решетки могут действовать скорее как зеркала, ограничивая и направляя свет. Сотовое расположение полых микроскопических каналов внутри хитиновых шипов своеобразного морского червя, известного как морская мышь, превращает эти похожие на волосы структуры в естественные оптические волокна, которые могут направлять свет, заставляя существо менять цвет с красного на голубовато-зеленый в зависимости от направления движения. освещение.Это изменение цвета может служить отпугиванием хищников.

Этот принцип использования мягких тканей и мембран в качестве форм для формирования узорчатых минеральных экзоскелетов широко используется в море. У некоторых губок есть экзоскелеты, сделанные из минеральных стержней, связанных наподобие лазаных рам, которые выглядят удивительно похожими на узоры, образованные краями и стыками мыльных пленок в пене — не случайно, если поверхностное натяжение диктует архитектуру.

Такие процессы, известные как биоминерализация, дают впечатляющие результаты у морских организмов, называемых радиоляриями и диатомовыми водорослями.Некоторые из них имеют экзоскелеты с тонким рисунком, состоящие из сетки минеральных шестиугольников и пятиугольников: вы могли бы назвать их сотами моря. Когда немецкий биолог (и талантливый художник) Эрнст Геккель впервые увидел их формы в микроскоп в конце 19 века, он сделал их звездой привлекательности портфолио рисунков под названием Art Forms in Nature , которые были очень влиятельны среди художников начала 20 века и до сих пор вызывают восхищение. Для Геккеля они, казалось, свидетельствовали о фундаментальном творчестве и артистизме в мире природы — предпочтении порядка и закономерностей, заложенных в самих законах природы.Даже если мы не разделяем это мнение сейчас, есть что-то в убеждении Геккеля, что узоры — это неудержимый импульс естественного мира, который мы имеем полное право считать красивым.

Филип Болл — автор книги « Невидимое: опасное очарование невидимого» и многих книг по науке и искусству.

Перепечатано с разрешения из Паттерны в природе: почему мир природы выглядит именно так, , ​​Филип Болл, опубликовано издательством Чикагского университета.© 2016, Marshall Editions. Все права защищены.

правильных пятиугольников

правильных пятиугольников

Углы в равнобедренных треугольниках

В треугольнике ABC с AB = AC углы между равными сторонами равны. Пусть a = угол BAC и пусть b = угол ABC = угол ACB.

Используя теорему о сумме углов, если известно a, то определяется b, а если b задано, то определяется a.

Запишите отношения:

а =

б =

Некоторые важные примеры

а

б

90

60

36

72

Сумма углов в выпуклых многоугольниках (неофициальная версия)

Мы знаем, что сумма углов при вершинах треугольника на плоскости всегда равна 180 градусам.Теорема о суммах углов для многоугольников в целом будет тщательно разработана позже, а пока это будет краткое неформальное введение.

Четырехугольники

Пусть ABCD — четырехугольник. Если диагональ AC (продолженная до прямой) такова, что B находится с одной стороны от AC, а D — с другой, то ABCD делится на объединение двух треугольников ABC и CDA.

В этом случае сумма углов ABCD составляет 360 градусов, что является суммой углов двух треугольников, поскольку 180 + 180 = 360 градусов.

Для выпуклого четырехугольника, такого как левый, это работает для любого выбора диагонали. Для невыпуклого четырехугольника справа мы выбрали одну диагональ, которая делит четырехугольник на два треугольника.

Пентагоны

Если мы разделим пятиугольник на треугольники, как показано на рисунке слева внизу, пятиугольник состоит из трех треугольников, поэтому сумма углов составит 180 + 180 + 180 = 3 * 180 = 540 градусов.

Однако невыпуклый пятиугольник справа — более сложный случай.Если у нас есть фигура на странице, мы всегда можем найти способ нарисовать сегменты, чтобы разделить пятиугольник на 3 треугольника, но как мы можем доказать это во всех случаях? Как мы можем доказать разбиение треугольников на многоугольники с большим количеством вершин? Это не только теоретическая проблема, но и практическая проблема информатики. Если многоугольник задан на плоскости с помощью координат, как можно указать компьютеру разделить его на треугольники? Мы вернемся к этому вопросу позже. На данный момент мы делаем разумное предположение, что любые встречающиеся нам пятиугольники можно разделить на 3 треугольника.Это, безусловно, верно для выпуклых, как мы видим на рисунке слева.

Вопрос : Правильный пятиугольник определяется как пятиугольник, у которого все углы равны и все стороны равны. Какой должен быть угол в каждой вершине?

Ответ :

Равнобедренные треугольники в правильном пятиугольнике

Для правильного многоугольника мы видели, что угол каждой вершины равен 108 = 3 * 180/5 градусов.

На этом рисунке начертите диагональ переменного тока.

  • Объясните, почему треугольник ABC является равнобедренным.
  • Запишите размеры углов треугольника ABC. На рисунке обозначьте каждый угол треугольника ABC числом градусов в угле.
  • Затем нарисуйте диагональ AD и аналогичным образом обозначьте размеры углов в треугольнике ADE. Почему треугольник ADE конгруэнтен треугольнику ABC?
  • Объясните, почему треугольник CAD является равнобедренным треугольником.
  • Наконец, используя то, что вы сейчас знаете обо всех углах с вершиной в A, запишите величину угла CAD, а затем обозначьте размеры других углов треугольника ACD.
  • Пусть s = || AB | и пусть d = | AC |. Назовите углы в треугольнике, подобном (1) треугольнику со сторонами s-s-d и (2) треугольнику со сторонами d-d-s.

Углы в пятиугольнике и пентаграмме

Знакомая пятиконечная звезда или пентаграмма также является правильной фигурой с равными сторонами и одинаковыми углами.

Пентаграмму можно нарисовать, нарисовав все диагонали правильного пятиугольника.

На предыдущей странице мы видели углы некоторых равнобедренных треугольников. В частности, появились углы 36, 72 и 108 градусов. На этом рисунке выше отметьте все углы в 36 градусов одиночной меткой, отметьте углы в 72 градуса двойной меткой и все углы в 108 градусов тройной меткой.

Передаточные числа в правильном пятиугольнике

Обозначим пересечение AC и BD буквой F.

Теперь, временно игнорируя остальную часть фигуры, сконцентрируйтесь на этом треугольнике с подтреугольником. Обозначьте все углы на рисунке их размерами.

Объясните, основываясь на углах, почему каждый из подтреугольников представляет собой равнобедренный треугольник.

  • Учитывая, что | AC | = d и | CD | = s, что такое | CD |?
  • Используя аналогичные треугольники, найдите уравнение, связывающее s и d.
  • Пусть теперь отношение r = d / s.Перепишите уравнение как уравнение относительно r. (Других переменных не должно быть.) Затем решите относительно r.

Как сделать правильный шестиугольник?

Построение правильного шестиугольника

Нарисуйте круг достаточно, чтобы увидеть, где он пересекает исходный круг, и отметьте точку пересечения. Затем поместите компас на эту новую точку и повторите этот процесс, чтобы получить третью точку. Продолжайте делать это, пока не наберете шесть баллов. Соедините их, чтобы получить шестигранник .

Щелкните, чтобы увидеть полный ответ

Кроме того, как сделать шестиугольник с помощью циркуля?

Шаги

  1. Нарисуйте круг с помощью циркуля.
  2. Переместите циркуль к краю круга.
  3. Сделайте карандашом небольшую отметку на краю круга.
  4. Переместите указатель компаса к сделанной вами отметке.
  5. Сделайте еще одну отметку на краю круга карандашом.
  6. Сделайте четыре последних отметки тем же способом.

Также знайте, как построить правильный шестиугольник, вписанный в круг? Объяснение метода. Как можно увидеть в определении шестиугольника , каждая сторона правильного шестиугольника равна расстоянию от центра до любой вершины. Эта конструкция просто устанавливает ширину циркуля равной этому радиусу, а затем уменьшает эту длину по окружности , чтобы создать шесть вершин шестиугольника .

Также спросили, как разрезать 4х4 на шестиугольник?

Легкая шестигранная деревянная стойка из 2 на 4

  1. Шаг 1. Подготовьте заготовку.Разрежьте 2 на 4 пополам или на четверти. Нарежьте детали на строгальном станке или фуговальном станке, чтобы все четыре стороны были плоскими и квадратными.
  2. Шаг 2: Вырежьте шестиугольник. Еще 2 изображения. Установите полотно настольной пилы под углом 30 градусов.
  3. Шаг 3: Готово. Вы сделали.

Как построить серединный перпендикуляр?

Серединный перпендикуляр отрезка прямой

  1. раскрывает циркуль более чем на половину расстояния между точками A и B и наносит дуги того же радиуса с центрами в точках A и B.
  2. Назовите две точки, где эти две дуги пересекаются с C и D. Проведите линию между C и D.
  3. CD — это серединный перпендикуляр к отрезку AB.
  4. Доказательство.

Открытые учебники | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • 7 класс (A и B вместе)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8A

        • Сорт 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5A

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без марочного знака)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

полигонов и треугольников — бесплатная справка по математике

Определение

Многоугольник — это замкнутая геометрическая фигура, стороны которой представляют собой простые отрезки прямых.Каждый угол многоугольника, где пересекаются две стороны, называется вершиной многоугольника.

Например, треугольник — это многоугольник с 3 сторонами. Также есть три вершины, по одной в каждой точке. Это простейший многоугольник, потому что вы не можете построить его с одной или двумя сторонами (попробуйте!).

Классификация полигонов

Многоугольник можно определить по количеству сторон.

(1) Многоугольник с 4 сторонами называется четырехугольником.

(2) Многоугольник с 5 сторонами называется пятиугольником .

Многоугольник с 8 сторонами называется восьмиугольником .

Многоугольник с 10 сторонами называется десятиугольником .

Многоугольник с 12 сторонами называется двенадцатигранником .

ПРИМЕЧАНИЕ: Есть еще много многоугольников, но перечисленные здесь являются одними из самых популярных и наиболее часто преподаются на уроках геометрии. Многоугольники с более чем 12 сторонами обычно называют n-угольниками. Например, многоугольник с 56 сторонами — это 56-угольник.

Прочие условия

В равностороннем многоугольнике каждый угол имеет одинаковую величину в градусах.Квадрат является примером равноугольного многоугольника, потому что каждый из 4 углов составляет 90 градусов. То же можно сказать и о прямоугольнике.

В равностороннем многоугольнике каждая сторона имеет одинаковую длину. В треугольнике ABC ниже все стороны равны 12 футам, что делает треугольник ABC равносторонним.

Правильный многоугольник является ОБОИМ равносторонним и равносторонним. Квадрат — это правильный многоугольник, потому что все стороны имеют одинаковую длину и все углы равны: 90 градусов.

Классификация треугольников

Треугольники можно классифицировать по

(A) их сторон, или

(В) их углы

Разносторонний треугольник имеет 3 стороны различной длины.

Равнобедренный треугольник имеет две равные стороны и одну не равную сторону.

Равносторонний треугольник имеет 3 равные стороны.

В остром треугольнике все углы будут меньше 90 градусов.

Прямоугольный треугольник всегда будет иметь один угол 90 градусов.

У тупого треугольника всегда будет один угол, размер которого больше 90 градусов, но в то же время меньше 180 градусов.

Медиана и высота (высота)

Медиана треугольника — это отрезок, проведенный от вершины треугольника до середины противоположной стороны.

Высота или высота треугольника — это отрезок, проведенный из вершины треугольника, перпендикулярной противоположной стороне или удлиненной противоположной стороне.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *