Содержание

Амеба (род) - Amoeba (genus)

Amoeba является родом из одноклеточных амебоидов в семье Amoebidae . В типовом виде рода является амеба протей , общий пресноводный организм, широко изучен в классах и лабораториях.

История и классификация

Первая иллюстрация амебоида из « Insecten- Belustigung» Розеля фон Розенгофа (1755 г.).

Самая ранняя запись об организме, напоминающем амебу, была произведена в 1755 году Августом Иоганном Рёзелем фон Розенхофом , который назвал свое открытие « der kleine Proteus » («маленький Протей») в честь Протея , меняющего форму морского бога греческой мифологии. Хотя на иллюстрациях Розеля изображено существо, внешне похожее на то, что сейчас известно как Amoeba proteus, его «маленький протей» нельзя с уверенностью идентифицировать ни с одним современным видом.

Термин «Proteus animalcule » оставался в употреблении на протяжении XVIII и XIX веков как неофициальное название любого крупного свободно живущего амебоида.

В 1758 году, очевидно, не видя для себя «Протея» Розеля, Карл Линней включил этот организм в свою систему классификации под названием Volvox chaos . Однако, поскольку название Volvox уже применялось к роду жгутиковых водорослей, позже он изменил название на Chaos chaos . В 1786 году датский натуралист Отто Мюллер описал и проиллюстрировал вид, который он назвал Proteus diffluens , который, вероятно, был организмом, известным сегодня как Amoeba proteus.

Род Amiba от греческого amoibè (ἀμοιβή ), что означает «изменение», был основан в 1822 году Бори де Сен-Винсентом . В 1830 г. немецкий естествоиспытатель К. Г. Эренберг принял этот род в свою классификацию микроскопических существ, но изменил написание на « Амеба ».

Анатомия, кормление и размножение

Анатомия амебы .

Виды амебы перемещаются и питаются, расширяя временные структуры, называемые псевдоподиями . Они образуются в результате скоординированного действия микрофиламентов в цитоплазме клетки, выталкивая плазматическую мембрану, окружающую клетку. У

Amoeba псевдоподии приблизительно трубчатые, а на концах закруглены (лопастные). Общая форма клетки может быстро меняться по мере того, как псевдоподии расширяются и втягиваются в тело клетки. Амеба может производить много псевдоподии сразу, особенно когда свободно плавающая. При быстром ползании по поверхности клетка может принимать примерно моноподиальную форму с единственным доминирующим псевдоподом, развернутым в направлении движения.

Исторически исследователи разделили цитоплазму на две части, состоящие из гранулярной внутренней эндоплазмы и внешнего слоя прозрачной эктоплазмы , которые заключены в гибкую плазматическую мембрану . Клетка обычно имеет одно зернистое ядро , содержащее большую часть ДНК организма . Сократительная вакуоль используются для поддержания осмотического равновесия пути экскреции избытка воды из клетки (см осморегуляции ).

Амебы

получают свою пищу фагоцитоза , поглощая более мелкие организмы и частицы органического вещества, или путем пиноцитозом , принимая в растворенных питательных веществах через пузырьки , образованные в клеточной мембране. Пища, окруженная амебой , хранится в пищеварительных органеллах, называемых пищевыми вакуолями .

Амеба , как и другие одноклеточные эукариотические организмы, размножается бесполым путем путем митоза и цитокинеза . Сексуальные явления не наблюдались напрямую у амеб , хотя известно, что половой обмен генетическим материалом происходит и в других группах амеб . Большинство амебозоидов, по- видимому, способны выполнять сингамию, рекомбинацию и снижение плоидности посредством стандартного мейотического процесса . «Бесполый» модельный организм Amoeba proteus содержит большинство белков, связанных с половыми процессами . В случаях насильственного деления организмов часть, в которой находится ядро, часто выживает и образует новую клетку и цитоплазму, а другая часть умирает.

Осморегуляция

Как и многие другие протисты, виды амеб контролируют осмотическое давление с помощью связанной с мембраной органеллы, называемой сократительной вакуолью . Amoeba proteus имеет одну сократительную вакуоль, которая медленно заполняется водой из цитоплазмы (диастола), затем, сливаясь с клеточной мембраной, быстро сокращается (систола), высвобождая воду наружу за счет экзоцитоза . Этот процесс регулирует количество воды, присутствующей в цитоплазме амебы.

Сразу после того, как сократительная вакуоль (CV) вытесняет воду, ее мембрана сминается. Вскоре после этого появляется множество мелких вакуолей или пузырьков, окружающих мембрану ЦВ. Предполагается, что эти везикулы отделяются от самой CV-мембраны. Маленькие пузырьки постепенно увеличиваются в размере по мере того, как они впитывают воду, а затем сливаются с CV, который увеличивается в размерах по мере заполнения водой. Следовательно, функция этих многочисленных мелких пузырьков состоит в том, чтобы собирать избыток цитоплазматической воды и направлять ее к центральному ЦВ.

CV набухает в течение нескольких минут, а затем сжимается, вытесняя воду наружу. Затем цикл повторяется снова.

Мембраны мелких везикул, а также мембрана CV содержат встроенные в них белки аквапорины . Эти трансмембранные белки облегчают прохождение воды через мембраны. Присутствие белков аквапоринов как в CV, так и в небольших везикулах предполагает, что сбор воды происходит как через саму CV-мембрану, так и за счет функции везикул. Однако везикулы, будучи более многочисленными и меньшими по размеру, позволяют быстрее поглощать воду из-за большей общей площади поверхности, обеспечиваемой везикулами.

Маленькие везикулы также имеют другой белок, встроенный в их мембрану: Н + -АТФаза вакуолярного типа или V-АТФаза. Эта АТФаза закачивает ионы H + в просвет везикул, понижая его pH по отношению к цитозолю . Однако pH CV у некоторых амеб является умеренно кислым, что позволяет предположить, что ионы H + удаляются из CV или везикул.

Считается, что электрохимический градиент, создаваемый V-АТФазой, может использоваться для транспорта ионов (предполагается, что K + и Cl - ) в везикулы. Это создает осмотический градиент через мембрану везикул, что приводит к притоку воды из цитозоля в везикулы за счет осмоса, которому способствуют аквапорины.

Поскольку эти везикулы сливаются с центральной сократительной вакуолью, которая вытесняет воду, ионы в конечном итоге удаляются из клетки, что неблагоприятно для пресноводных организмов. Удаление ионов с водой должно быть компенсировано каким-то еще неустановленным механизмом.

Как и на других эукариот, на виды амеб негативно влияет чрезмерное осмотическое давление, вызванное чрезмерно солевым раствором или разбавленной водой. В соленой воде амеба предотвращает приток соли, что приводит к чистой потере воды, так как клетка становится изотоничной с окружающей средой, вызывая сокращение клетки. Помещенная в пресную воду , амеба будет соответствовать концентрации окружающей воды, вызывая разбухание клетки.

Если окружающая вода будет слишком разбавленной, ячейка может лопнуть.

Кисты амебы

В средах, потенциально смертельных для клетки, амеба может бездействовать, превращаясь в шар и секретируя защитную мембрану, превращаясь в микробную кисту . Клетка остается в этом состоянии до тех пор, пока не попадет в более благоприятные условия. Находясь в форме кисты, амеба не может воспроизводиться и может умереть, если не сможет появиться в течение длительного периода времени.

Видео галерея

Амеба протей в движении Амеба поглощает диатомовые водоросли

Рекомендации

внешние ссылки

  • СМИ, связанные с амебой, на Викискладе?
  • Данные, относящиеся к амебам, на Wikispecies

класс, среда обитания, фото. Как передвигается амеба протей

Тело амёбы протей (рис.

16) покрыто плазматической мембраной . Всеми дей-ствиями амебы руководит ядро . Цитоплазма находится в постоянном движении. Если её микропотоки устремляются к одной точке поверхности амебы, там появляется выпя-чивание. Оно увеличивается в размерах, становится вы-ростом тела. Это ложноножка, которая прикрепляется к частицам ила. В нее постепенно перетекает все содержимое амебы. Так происходит передвижение амебы с места на место.

Амеба протей — всеядное животное. Ее пищу составляют бактерии , одноклеточные растения и живот-ные, а также разлагающиеся органические частицы . Пере-двигаясь, амеба наталкивается на пищу и обтекает ее со всех сторон и та оказывается в цитоплазме (рис. 16). Во-круг пищи формируется пищеварительная вакуоль, куда поступают пищеварительные секреты, переваривающие пи-щу . Такой способ захвата пищи называется клеточным заглатыванием.

Амеба может питаться и жидкой пищей, используя другой способ — клеточное питье. Происходит это так. Снаружи внутрь цитоплазмы впячивается тонкая трубочка, в которую засасывается жидкая пища. Вокруг нее обра-зуется пищеварительная вакуоль.

Рис. 16. Строение и питание амебы

Выделение

Как и у бодо, вакуоль с непереваренными остатками пищи перемещается к поверхности тела амебы и ее содер-жимое выбрасывается наружу. Выделение вредных веществ жизнедеятельности и из-бытка воды происходит при помощи сокра-тительной (пульсирующей) вакуоли.

Дыхание

Дыхание у амебы осуществляется так же, как у бодо (см. Бодо — животное жгутиконосец ).

Каждый вид простейших животных имеет свое строение, свою форму, в том числе и очень сложную и причудливую. Она образуется не случайно, и сохраняется очень долго: на дне океана в отложениях, образовавшихся десятки миллионов лет назад, находят точно такие же раковины фораминифер.

Такое возможно потому, что у каждого вида построение организма осуществляется по определенному плану, опре-деленной программе. Эта программа записана особым ко-дом на длинных молекулах, хранящихся в ядре клетки , точно так же, как программы для компьютера записывают на магнитном жестком диске. Перед размножением с программы списывается копия, и передается потомству. Эти программы можно называть генетически закрепленными, или врожденными. Материал с сайта

Ядро клетки содержит не только программы, как ее построить, но и как действовать. Они определяют действия животного — его поведение . Подобно тому, как у одних простейших программы построения формы тела приводят к простой форме, а у других к сложной, так и программы поведения могут быть и простыми, и сложными. Разно-образие животных по сложности программы поведения не меньше, чем разнообразие их форм.

Амеба тоже реагирует на многие сигналы, запуская свои программы поведения. Так, она распознает разные виды микроскопических организмов, служащих ей пищей; уходит от яркого света; определяет концентрацию веществ в среде обитания; уходит от постоянного механического раздражения.

Происхождение саркодовых

В пре-делах жгутиконосцев проходит зыбкая граница (отличи-тельная черта) между двумя царствами — растениями и животными. На первый взгляд кажется, что между жи-вотными жгутиконосцами и саркодовыми имеется резкое различие: первые передвигаются при помощи жгутиков, вторые — с использованием ложноножек. Но оказывается, что саркодовые, считавшиеся ранее древнейшими простей-шими, ныне рассматриваются как эволюционные потомки животных жгутиконосцев. Дело в том, что у многих сар-кодовых во время размножения появляются жгутики, как, например, у половых клеток радиолярий и фораминифер. Следовательно, жгутики когда-то были и у саркодовых. Более того, известны животные жгутиконосцы (например, жгутиковая амеба), принимающие форму амебы для за-хвата пищи при помощи ложноножек. Все это позволяет считать, что саркодовые произошли от древних жгутиконосцев и утратили жгутики при дальнейшей эво-люции.

Вопросы по этому материалу:

Простейшие в капле прудовой воды (под микроскопом).

Класс корненожек объединяет наиболее простых одноклеточных животных, тело которых лишено плотной оболочки, а потому не имеет постоянной формы.Для них характерно образование ложноножек, которые представляют собой временно образующиеся выросты цитоплазмы, способствующие передвижению и захвату пищи.

Среда обитания, строение и передвижение амёбы. Обыкновенная амёба встречается в иле на дне прудов с загрязненной водой. Она похожа на маленький (0,2-0,5 мм), едва заметный простым глазом бесцветный студенистый комочек, постоянно меняющий свою форму ("амеба" означает "изменчивая"). Рассмотреть детали строения амёбы можно только под микроскопом.

Тело амёбы состоит из полужидкой цитоплазмы с заключенным внутрь неё небольшим пузыревидным ядром . Амёба состоит из одной клетки, но эта клетка — целый организм, ведущий самостоятельное существование.

Цитоплазма клетки находится в постоянном движении. Если ток цитоплазмы устремляется к одной какой-то точке поверхности амёбы, в этом месте на её теле появляется выпячивание. Оно увеличивается, становится выростом тела — ложноножкой, в него перетекает цитоплазма, и амёба таким способом передвигается. Амёбу и других простейших, способных образовывать ложноножки, относят к группе корненожек . Такое название они получили за внешнее сходство ложноножек с корнями растений.

Жизнидеятельность Амёбы.

Питание . У амёбы одновременно может образовываться несколько ложноножек, и тогда они окружают пищу — бактерии, водоросли, других простейших. Из цитоплазмы, окружающей добычу, выделяется пищеварительный сок. Образуется пузырёк — пищеварительная вакуоль. Пищеварительный сок растворяет часть веществ, входящих в состав пищи, и переваривает их. В результате пищеварения образуются питательные вещества, которые просачиваются из вакуоли в цитоплазму и идут на построение тела амебы. Нерастворенные остатки выбрасываются наружу в любом месте тела амебы.

Строение и питание Амёбы.

Дыхание Амёбы . Амёба дышит растворенным в воде кислородом, который проникает в ее цитоплазму через всю поверхность тела. При участии кислорода происходит разложение сложных пищевых веществ цитоплазмы на более простые. При этом выделяется энергия, необходимая для жизнидеятельности организма.

Выделение вредных веществ жизнидеятельности и избытка воды. Вредные вещества удаляются из организма амёбы через поверхность ее тела, а также через особый пузырек — сократительную вакуоль. Окружающая амебу вода постоянно проникает в цитоплазму, разжижая ее. Избыток этой воды с вредными веществами постепенно наполняет вакуоль. Время от времени содержимое вакуоли выбрасывается наружу. Итак, из окружающей среды в организм амёбы поступают пища, вода, кислород. В результате жизнедеятельности амёбы они претерпевают изменения. Переваренная пища служит материалом для построения тела амёбы. Образующиеся вредные для амёбы вещества удаляются наружу. Происходит обмен веществ. Не только амёба, но и все другие живые организмы не могут существовать без обмена веществ как внутри своего тела, так и с окружающей средой.

Размножение Амёбы . Питание амёбы приводит к росту ее тела. Выросшая амёба приступает к размножению. (? Наверное вследствии превышения определённой массы её тела.) Размножение начинается с изменения ядра. Оно вытягивается, поперечной бороздкой делится на две половинки, которые расходятся в разные стороны — образуется два новых ядра. Тело амёбы разделяет на две части перетяжка. В каждую из них попадает по одному ядру. Цитоплазма между обеими частями разрывается, и образуются две новые амёбы. Сократительная вакуоль остается в одной из них, в другой же возникает заново. Итак, амёба размножается делением надвое. В течение суток деление может повторяться несколько раз.

Деление (размножение) Амёбы.

Циста . Питание и размножение амёбы происходит в течение всего лета. Осенью при наступлении холодов амёба перестает питаться, тело ее становится округлым, на его поверхности выделяется плотная защитная оболочка — образуется циста. То же самое происходит при высыхании пруда , где живут амёбы. В состоянии цисты амёба переносит неблагоприятные для неё условия жизни. При наступлении благоприятных условий амёба покидает оболочку цисты. Она выпускает ложноножки, начинает питаться и размножаться. Цисты, разносимые ветром, способствуют расселению (распространению) амеб.

Возможные дополнительные вопросы для самостоятельного изучения.

  • Что заставляет Цитоплазму планомеренно перетекать из одного участка Амёбы в другой, заставляя её передвигаться в заданном направлении?
  • Как происходит распознавание оболочкой цитоплазмы Амёбы питательных веществ, вследствии чего амёба целенаправленно формирует ложноножки и пищеварительную вакуоль?

К оглавлению .

Амебы - это род одноклеточных организмов-эукариот (относятся к простейшим).

Считаются животноподобными, так как питаются гетеротрофно.

Строение амеб обычно рассматривают на примере типичного представителя - амебы обыкновенной (амебы протея).

Амеба обыкновенная (далее амеба) обитает на дне пресноводных водоемов с загрязненной водой. Ее размер колеблется от 0,2 мм до 0,5 мм. По внешнему виду амеба похожа на бесформенный бесцветный комок, способный менять свою форму.

Клетка амебы не имеет жесткой оболочки.

Она образует выпячивания и впячивания. Выпячивания (цитоплазматические выросты) называют ложноножками или псевдоподиями. Благодаря им амеба может медленно двигаться, как бы перетекая с места на место, а также захватывать пищу.

Образование ложноножек и перемещение амебы происходит за счет движения цитоплазмы, которая постепенно перетекает в выпячивание.

Хотя амеба одноклеточный организм и не может быть речи об органах и их системах, ей свойственны почти все процессы жизнедеятельности, характерные для многоклеточных животных.

Амеба питается, дышит, выделяет вещества, размножается.

Цитоплазма амебы не однородна. Выделяют более прозрачный и плотный наружный слой (эктоплазма) и более зернистый и жидкий внутренний слой цитоплазмы (эндоплазма).

В цитоплазме амебы находятся различные органеллы, ядро, а также пищеварительная и сократительная вакуоли.

Питается амеба различными одноклеточными организмами и органическими остатками.

Пища обхватывается ложноножками и оказывается внутри клетки, образуется пищеварительная вакуоль. В нее поступают различные ферменты, расщепляющие питательные вещества. Те, которые нужны амебе, потом поступают в цитоплазму. Ненужные остатки пищи остаются в вакуоли, которая подходит к поверхности клетки и из нее все выбрасывается.

«Органом» выделения у амебы является сократительная вакуоль.

В нее поступают излишки воды, ненужные и вредные вещества из цитоплазмы. Заполненная сократительная вакуоль периодически подходит к цитоплазматической мембране амебы и выталкивает наружу свое содержимое.

Дышит амеба всей поверхностью тела.

В нее из воды поступает кислород, из нее - углекислый газ. Процесс дыхания заключается в окислении кислородом органических веществ в митохондриях. В результате выделяется энергия, которая запасается в АТФ, а также образуются вода и углекислый газ.

Для амебы описан только бесполый способ размножения путем деления надвое. Делятся только крупные, т. е. выросшие, особи. Сначала делится ядро, после чего клетка амебы делится перетяжкой. Та дочерняя клетка, которая не получает сократительную вакуоль, образует ее впоследствии.

С наступлением холодов или засухи амеба образует цисту.

Цисты имеет плотную оболочку, выполняющую защитную функцию. Они достаточно легкие и могут разноситься ветром на большие расстояния.

Амеба способна реагировать на свет (уползает от него), механическое раздражение, наличие в воде определенных веществ.

К подцарству Одноклеточные относятся животные, тело которых состоит всего из одной клетки, большей частью микроскопического размера, но со всеми присущими организму функциями.

В физиологическом отношении эта клетка представляет целый самостоятельный организм.

Двумя основными компонентами тела одноклеточных являются цитоплазма и ядро (одно или несколько).

Как выглядит амеба? Форма тела

Цитоплазма окружена наружной мембраной. Она имеет два слоя: наружный (более светлый и плотный)— эктоплазму — и внутренний — эндоплазму.

В эндоплазме находятся клеточные органоиды: митохондрии, эндоплазматическая сеть, рибосомы, элементы аппарата Гольджи, различные опорные и сократительные волокна, сократительные и пищеварительные вакуоли и др.

Среда обитания и внешнее строение обыкновенной амёбы

Простейшее живёт в воде. Это может быть и вода озера, и капля росы, и влага почвы, и даже вода внутри нас.

Поверхность тела их очень нежная и без воды моментально высыхает. Внешне амёба похожа на сероватый студенистый комочек (0,2-05 мм), не имеющий постоянной формы.

Движение

Амёба «перетекает» по дну. На теле постоянно образуются меняющие свою форму выросты— псевдоподии (ложноножки). В один из таких выступов постепенно переливается цитоплазма, ложная ножка в нескольких точках прикрепляется к субстрату и происходит передвижение.

Внутреннее строение

Внутреннее строение амебы

Питание

Передвигаясь, амёба наталкивается на одноклеточные водоросли, бактерии, мелкие одноклеточные, «обтекает» их и включает в цитоплазму, образуя пищеварительную вакуоль.

Питание амебы

Ферменты, расщепляющие белки, углеводы и липиды, поступают внутрь пищеварительной вакуоли, и происходит внутриклеточное пищеварение.

Пища переваривается и всасывается в цитоплазму. Способ захвата пищи с помощью ложных ножек называется фагоцитозом.

Дыхание

Кислород расходуется на клеточное дыхание. Когда его становится меньше, чем во внешней среде, новые молекулы проходят внутрь клетки.

Дыхание амебы

Молекулы углекислого газа и вредных веществ, накопившихся в результате жизнедеятельности, наоборот, выходят наружу.

Выделение

Пищеварительная вакуоль подходит к клеточной мембране и открывается наружу, чтобы непереваренные остатки выбросить наружу в любом участке тела.

Жидкость поступает в тело амёбы по образующимся тонким трубковидным каналам, путём пиноцитоза. Откачиванием лишней воды из организма занимаются сократительные вакуоли. Они постепенно наполняются, а раз в 5-10 минут резко сокращаются и выталкивают воду наружу. Вакуоли могут возникать в любой части клетки.

Размножение

Амёбы размножаются только бесполым путём.

Размножение амебы

Выросшая амёба приступает к размножению.

Оно происходит путём деления клетки. До деления клетки ядро удваивается, чтобы каждая дочерняя клетка получила свою копию наследственной информации (1). Размножение начинается с изменения ядра. Оно вытягивается (2), а затем постепенно удлиняется (3,4) и перетягивается посредине. Поперечной бороздкой делится на две половинки, которые расходятся в разные стороны— образуются два новых ядра. Тело амёбы разделяется на две части перетяжкой и образуется две новые амёбы.

В каждую из них попадает по одному ядру (5). Во время деления происходит образование недостающих органоидов.

В течение суток деление может повторяться несколько раз.

Бесполое размножение — простой и быстрый способ увеличить число своих потомков.

Этот способ размножения не отличается от деления клеток при росте тела многоклеточного организма. Разница в том, что дочерние клетки одноклеточного организма, расходятся, как самостоятельные.

Реакция на раздражение

Амёба обладает раздражимостью — способностью чувствовать и реагировать на сигналы из внешней среды.

Наползая на предметы, она отличает съедобные от несъедобных и захватывает их ложноножками. Она уползает и прячется от яркого света (1),

механических раздражений и повышенной концентрации, вредных для нее веществ (2).

Такое поведение, состоящее в движении к раздражителю или от него, называется таксисом.

Половой процесс

Отсутствует.

Переживание неблагоприятных условий

Одноклеточное животное очень чувствительно к изменениям окружающей среды.

В неблагоприятных условиях (при высыхании водоёма, в холодное время года) амёбы втягивают псевдоподии.

На поверхность тела из цитоплазмы выделяются значительное количество воды и вещества, которые образуют прочную двойную оболочку. Происходит переход в покоящееся состояние— цисту (1). В цисте жизненные процессы приостанавливаются.

Цисты, разносимые ветром, способствуют расселению амебы.

При наступлении благоприятных условиях амёба покидает оболочку цисты.

Она выпускает псевдоподии и переходит в активное состояние (2-3).

Ещё одна форма защиты — способность к регенерации (восстановлению). Повреждённая клетка может достроить свою разрушенную часть, но только при условии сохранения ядра, так как там хранится вся информации о строении.

Жизненный цикл амёбы

Жизненный цикл амёбы прост.

Клетка растёт, развивается (1) и делится бесполым путём (2). В плохих условиях любой организм может «временно умереть» — превратиться в цисту (3). При улучшении условий он «возвращается к жизни» и усиленно размножается.

Жизненный цикл амёбы

ОБЫКНОВЕННАЯ АМЕБА. СРЕДА ОБИТАНИЯ. ОСОБЕННОСТИ СТРОЕНИЯ.

Амёба пресноводная обитает в илистых отложениях дна болот,

прудов, сточных канав.

Тело амёбы размером 0,2-0,5 мм состоит из

цитоплазмы, ограниченной элементарной плазматической мембраной, и

одного ядра. Цитоплазма подразделяется на два слоя — наружный —

эктоплазму, и внутренний — эндоплазму. Наружный слой более вязкий,

однородный; внутренний-более жидкий, зернистый. В эндоплазме располагается ядро, органоиды общеклеточного значения, сократительная и пищеварительные вакуоли.

ПИТАНИЕ. На теле амёбы постоянно образуются ложноножки, что связано с изменением коллоидных свойств цитоплазмы и попеременным переходом эктоплазмы в эндоплазму и наоборот.

Благодаря образованию ложноножек амёба перемещается в среде. Наталкиваясь при движении на пищевые частицы, она обволакивает их ложноножками, поглощает цитоплазмой, образуя фагоцитарный пузырёк. Последний сливается в эндоплазме с лизосомой и образует пищеварительную вакуоль, в которой происходит переваривание пищи. Непереваренные остатки пищи выбрасываются в любом участке тела путём экзоцитоза.

ДЫХАНИЕ. Дыхание осуществляется путём диффузии через плазматическую мембрану кислорода, растворённого в воде.

Углекислый газ, образующийся в процессах внутриклеточного метаболизма выделяется через мембрану клетки или частично с водой сократительной вакуолью.

ВЫДЕЛЕНИЕ . Выделение продуктов диссимиляции осуществляется через плазматическую мембрану, а также сократительной вакуолью. Пульсируя с частотой 1-5 раз в минуту, она выполняет функции осморегуляции, т.к. удаляет из цитоплазмы избыток воды, а вместе с ней и растворённые продукты обмена.

РАЗДРАЖИМОСТЬ. Приспособление к изменяющимся условиям среды осуществляется за счёт раздражимости, которая проявляется у амёбы в форме таксисов.

Таксисы — это направленные ответные реакции одноклеточных организмов на действие определенных (химических, физических, биологических) раздражителей. Они могут быть положительными, если простейшее движется в сторону раздражителя, и отрицательными, если организм удаляется от раздражителя.

ОБРАЗОВАНИЕ ЦИСТЫ . Если интенсивность действия внешних факторов среды превышает пределы выносливости вида, то амёба переживает неблагоприятные условия в форме цисты.

Процесс образования цисты — инцистирование — сопровождается прекращением активных движений, исчезновением ложноножек, выделением защитной оболочки, покрывающей тело, замедлением процессов обмена. При попадании в благоприятные условия амёба выходит из цисты. Таким образом инцистирование обеспечивает сохранение вида в неблагоприятных условиях среды.

Размножение у амёбы бесполое. Материнская клетка делится посредством митоза на две генетически ей идентичные дочерние.

МОРСКИЕ ПРОСТЕЙШИЕ. Многие саркодовые являются обитателями морей.

Это фораминиферы и радиолярии. Фораминиферы имеют наружную раковину из органического вещества, которое выделяется эктоплазмой.

Размножаются бесполым и половым путями. Большинство видов живут на дне водоёмов. Отмирая, они образуют осадочные породы: толстые слои известняков, мела, зелёного песчаника, которые состоят преимущественно из раковин фораминифер. Обнаружение определенных видов фораминифер в древних пластах земной коры может указывать на близость нефтяных месторождений. Известняк используют как строительный материал.

Лучевики ведут планктонный образ жизни и обладают минеральным внутренним скелетом, состоящим, как правило, из окиси кремния.

Скелет выполняет защитную функцию и обеспечивает парение в воде. Лучевики, отмирая, образуют кремнийсодержащие осадочные породы, которые используют для изготовления абразивных порошков.

КЛАСС ЖГУТИКОВЫЕ. Объединяет около 8 тысяч видов простейших, органоидами движения которых являются жгутики.

Число их колеблется от одного до множества. Жгутики — это цилиндрические фибриллярные цитоплазматические структуры. Они состоят из 9 пар периферических и пары центральных фибрилл, покрытых цитоплазмой. Фибриллы начинаются в эндоплазме от базальных ядер и представляют собой микротрубочки, состоящие из сократимых белков.

Жгутиковые покрыты плотной эластичной оболочкой — пелликулой, благодаря которой и цитоскелету сохраняют постоянную форму тела.

В цитоплазме находятся одно или несколько ядер, общеклеточные органоиды. Большинство представителей класса гетеротрофы, но некоторые виды при определенных условиях могут питаться и аутотрофно.

Среди жгутиковых есть колониальные формы, например, вольвокс.

Считается, что именно от подобной группы простейших берут начало многоклеточные животные.

Размножаются делением надвое, но у некоторых видов встречается чередование бесполого размножения с половым процессом.

ЭВГЛЕНА ЗЕЛЕНАЯ. Представляет интерес как организм, занимающий промежуточное положение между растениями и животными.

Эвглена обитает в пресных стоячих водоёмах, загрязнённых гниющими органическими остатками.

Тело веретеновидное, размером около 0,05 мм, покрыто пелликулой. На переднем, закруглённом конце тела располагается жгутик, который берёт начало в цитоплазме от базального ядра. Его вращательные движения обеспечивают поступательное движение в воде. Вблизи жгутика у переднего конца тела локализуется сократительная вакуоль-органоид выделения и осморегуляции. Рядом с ней виден красный светочувствительный глазок. С помощью его осуществляются положительные фототаксисы, т.к.

свет играет важную роль в питании эвглены. По способу питания эвглена относится к миксотрофным организмам. На свету она питается как аутотроф, осуществляя с помощью хроматофоров, в которых содержится хлорофилл, реакции фотосинтеза.

Хроматофоры располагаются в цитоплазме, число их доходит до 20. Синтезируемые на свету углеводы превращаются в процессе анаболизма в парамил, вещество подобное крахмалу. Он откладывается в виде гранул в цитоплазме. В темноте эвглена питается как гетеротроф, органическими веществами, содержащимися в воде. Таким образом, сочетая в себе особенности питания зелёных растений и животных, эвглена является как бы переходной формой между первыми и вторыми.

О родстве с животными свидетельствует также наличие в стигме пигмента — астаксантина, который присущ только животным. Кроме того, даже при аутотрофном питании, эвглена нуждается в поступлении из вне витаминов В-1 и В-12, аминокислот. Ближе к заднему концу тела в цитоплазме лежит крупное ядро. Оно отделено от цитоплазмы двойной мембраной с порами. В кариоплазме находится хроматин и ядрышко.

Дыхание осуществляется за счёт диффузии кислорода из омывающей клетку воды.

Размножение эвглены происходит бесполым путём. Оно начинается с митотического деления ядра и удвоения жгутика. Затем на переднем конце тела между жгутиками в цитоплазме образуется углубление. Распространяясь в продольном направлении оно делит материнскую клетку на две дочерних. В благоприятных условиях среды эвглена существует в виде вегетативных форм, которые периодически делятся. В неблагоприятной среде эвглена инцистируется.

Жгутиковые имеют важное медицинское значение, т.к.

ТИП ИНФУЗОРИИ.

Тип инфузории или ресничные объединяет около 9000 видов одноклеточных, органоидами движения которых являются реснички. Они по структуре идентичны жгутикам, но значительно короче последних.

Среди простейших инфузории имеют наиболее сложную организацию, которая связана с дифференцировкой у них определенных цитоплазматических структур и ядерного аппарата, выполняющих специфические функции. Характерные признаки и биологию типа можно рассмотреть на примере инфузории-туфельки. Она обитает в стоячих пресных водоёмах с большим количеством разлагающихся органических остатков. Форма тела постоянная, удлиненная, передний конец закруглен, задний заострен.

Размеры от 0,1 до 0,3 мм. Оно покрыто тонкой, эластичной пелликулой, которая имеет сложное ячеистое строение. Цитоплазма дифференцирована на экто- и эндоплазму. Эктоплазма прозрачная, в ней находятся базальные ядра ресничек и особые палочковидные образования — трихоцисты, которые выполняют защитную функцию.

Реснички располагаются на поверхности тела в определенном порядке. Их согласованная работа обеспечивает направленное движение инфузорий в воде. Ближе к переднему концу на поверхности тела находится околоротовая воронка, которая ведёт в клеточную глотку. На дне последней расположен клеточный рот-цитостом.

В области околоротовой воронки реснички более длинные. Они направляют поток воды со взвешенными в ней пищевыми частицами через клеточную глотку к цитостому. На дне его вокруг пищевых частиц образуются пищеварительные вакуоли, которые совершают упорядоченное движение в эндоплазме клетки. Непереваренные остатки пищи через порошицу, располагающуюся вблизи заднего конца тела, выбрасываются наружу.

Функции выделения и осморегуляции выполняют две сократительные вакуоли, расположенные на противоположных концах тела.

Амёба обыкновенная

Они окружены радиальными приводящимися каналами, в которые из цитоплазмы осуществляется постоянный приток воды и продуктов обмена, растворенных в ней. Приводящие каналы и пульсирующие вакуоли сокращаются попеременно каждые 20-30 секунд. Заполняясь водой, каналы периодически опорожняются в пульсирующие вакуоли. При сокращении вакуолей их содержимое выталкивается во внешнюю среду.

В центре тела инфузории находятся два ядра. Большое, бобовидной формы полиплоидное — макронуклеус — управляет процессами метаболизма и дифференцировки.

Малое, диплоидное ядро — микронуклеус — контролирует процессы размножения и хранит видоспецифическую наследственную информацию.

Дышат инфузории кислородом, растворённым в воде и диффундирующим в организм через плазматическую мембрану.

Раздражимость играет важное значение в приспособлении к изменению условий среды и проявляется в форме таксисов — положительных или отрицательных. Это можно проследить на двух опытах. Поместим рядом на два предметных стекла по капле культуры инфузорий и чистой воды.

Внесём в культуру инфузорий на одном стекле кристалл соли, а в каплю чистой воды на другом стекле взвесь бактерий.

Соединим капли на каждом стекле тонким водяным мостиком и пронаблюдаем за поведением инфузорий. В первом опыте простейшие из культуры с кристаллом переходят в каплю чистой воды (отрицательный хемотаксис). Во втором, инфузории из культуры будут передвигаться в каплю с суспензией бактерий (положительный хемотаксис).

Для инфузорий характерно бесполое размножение путём поперечного деления.

Но у многих видов оно чередуется с половым процессом, который называется конъюгацией.

При бесполом размножении после удвоения ДНК оба ядра принимают вытянутую форму. Полиплоидный макронуклеус перешнуровывается в поперечном направлении с образованием двух дочерних макронуклеусов с почти одинаковыми наборами хромосом.

Микронуклеус делится митотически.

Образующееся при этом ахроматиновое веретено деления обеспечивает равномерное распределение хромосом и образование двух генетически идентичных дочерних микронуклеусов

После деления ядер посередине тела инфузории появляется поперечная перетяжка, которая углубляется и делит клетку на две части. У дочерних клеток в процессе их последующего развития формируются ротовые аппараты, недостающие сократительные вакуоли, трихоцисты, реснички.

При конъюгации две инфузории прикрепляются друг к другу перистомами и между ними образуется цитоплазматический мостик.

Макронуклеусы конъюгантов растворяются, а микронуклеусы делятся путем мейоза. Три из образовавшихся гаплоидных ядер каждой особи растворяются. Четвёртое ядро делится митотически на два пронуклеуса. Один из пронуклеусов каждой инфузории остаётся в материнской клетке. Второй пронуклеус — блуждающий, через цитоплазматический мостик переходит к партнёру. После обмена пронуклеусы сливаются и инфузории расходятся. Из образовавшихся диплоидных ядер происходит формирование новых макро- и микронуклеусов.

При конъюгации не происходит увеличения числа особей в популяции.

Но благодаря ей осуществляется обмен наследственной информацией и создаётся генетическое разнообразие в популяциях инфузорий. За счёт этого повышается приспособленность вида, его выживание.

Неблагоприятные условия среды инфузория переживает в форме цисты.

Экология инфузорий разнообразна. Они встречаются в пресных и морских водоёмах, почве, полостных органах многоклеточных животных. В водоёмах они входят в состав планктона или донных сообществ. В природе играют определенную роль в цепях питания. Питаясь микроорганизмами,водорослями инфузории способствуют очистке водоёмов. В тоже время эти простейшие служат пищей различных видов водных многоклеточных.

Некоторые виды инфузорий являются симбионтами жвачных млекопитающих.

Поселяясь в рубце и сетке их желудка, они участвуют в

процессах пищеварения хозяев.

ТИП СПОРОВИКИ.

Для их жизненного цикла характерно развитие с чередованием бесполого и полового размножения. Оно может протекать со сменой или без смены хозяев.

Таким образом комар является окончательным хозяином возбудителя малярии. В послевоенные годы на территории России малярия была ликвидирована.

Предыдущая123456789101112Следующая

Раздражимость у одноклеточных организмов. Таксисы.

Наиболее простые формы раздражимости наблюдаются у микроорганизмов (бактерий, одноклеточных грибов, водорослей, простейших).

В примере с амебой мы наблюдали движение амебы в сторону раздражителя (пища).

Такая двигательная реакция одноклеточных организмов в ответ на раздражение из внешней среды называется таксисом. Таксис вызван химическим раздражением, поэтому его называют еще хемотаксисом (рис. 51).

51.Хемотаксис у инфузорий

Таксисы могут быть положительными и отрицательными. Поместим пробирку с культурой инфузорий-туфелек в закрытую картонную коробочку с единственным отверстием, расположенным против средней части пробирки, и выставим ее на свет.

Через несколько часов все инфузории сконцентрируются в освещенной части пробирки.

Это положительный фототаксис.

Таксисы свойственны многоклеточным животным. Например, лейкоциты крови проявляют положительный хемотаксис по отношению к веществам, выделяемым бактериями, концентрируются в местах скопления этих бактерий, захватывают и переваривают их.

Раздражимость у многоклеточных растений. Тропизмы. Хотя у многоклеточных растений нет органов чувств и нервной системы, тем не менее у них отчетливо проявляются различные формы раздражимости.

Они заключаются в изменении направления роста растения или его органов (корня, стебля, листьев). Такие проявления раздражимости у многоклеточных растений называются тропизмами.

Стебель с листьями проявляют положительный фототропизм и растут по направлению к свету, а корень – отрицательный фототропизм (рис.

52). Растения реагируют на гравитационное поле Земли. Обратите внимание на деревья, растущие по склону горы.

Амеба обыкновенная: описание, размножение, среда обитания

Хотя поверхность почвы имеет наклон, деревья растут вертикально. Реакция растений на земное притяжение называется геотропизмом (рис. 53). Корешок, который появляется из прорастающего семени, всегда направлен вниз к земле – положительный геотропизм. Побег с листьями, развивающийся из семени, всегда направлен вверх от земли – отрицательный геотропизм.

Тропизмы очень разнообразны и играют большую роль в жизни растений.

Они ярко выражены в направлении роста у различных вьющихся и лазающих растений, например винограда, хмеля.

Рис. 52. Фототропизм

53.Геотропизм: 1 – цветочный горшок с пря-морастущими проростками редиса; 2 – цветочный горшок, положенный набок и содержащийся в темноте для устранения фототропизма; 3 – проростки в цветочном горшке изогнулись в сторону, противоположную действию силы тяжести (стебли обладают отрицательным геотропизмом)

Помимо тропизмов, у растений наблюдаются движения иного типа – настии. Они отличаются от тропизмов отсутствием определенной ориентировки к вызвавшему их раздражителю.

Например, если прикоснуться к листьям стыдливой мимозы, они быстро складываются в продольном направлении и опускаются книзу. Через некоторое время листья снова принимают прежнее положение (рис. 54).

Рис. 54. Настии у стыдливой мимозы: 1 – в нормальном состоянии; 2 – при раздражении

Цветки многих растений реагируют на свет и влажность.

Например, у тюльпана на свету цветки раскрываются, а в темноте закрываются. У одуванчика соцветие закрывается в пасмурную погоду и открывается в ясную.

Раздражимость у многоклеточных животных. Рефлексы. В связи с развитием у многоклеточных животных нервной системы, органов чувств и органов движения формы раздражимости усложняются и зависят от тесного взаимодействия этих органов.

В простейшем виде такое раздражение возникает уже у кишечнополостных.

Если уколоть иглой пресноводную гидру, то она сожмется в комочек. Внешнее раздражение воспринимает чувствительная клетка. Возникшее в ней возбуждение передается нервной клетке. Нервная клетка передает возбуждение кожно-мышечной клетке, которая реагирует на раздражение сокращением.

Этот процесс называется рефлексом (отражением).

Рефлекс – это ответная реакция организма на раздражение, осуществляемая нервной системой.

Представление о рефлексе было высказано еще Декартом. Позднее оно было развито в трудах И. М. Сеченова, И. п. Павлова.

Путь, проходимый нервным возбуждением от воспринимающего раздражение органа до органа, выполняющего ответную реакцию, называется рефлекторной дугой.

У организмов с нервной системой существует два типа рефлексов: безусловные (врожденные) и условные (приобретенные).

Условные рефлексы формируются на базе безусловных.

Любое раздражение вызывает изменение обмена веществ в клетках, что приводит к возникновению возбуждения и возникает ответная реакция.

Амеба – это одноклеточный организм микроскопических размеров из отряда Amoebidae. Свое название она получила от греческого слова «изменение». Тело простейшего организма не имеет какой-либо прочной оболочки или скелета. Поэтому форма микроорганизма неправильная, постоянно меняющаяся. Передвижение одноклеточного возможно благодаря ложноножкам, которые то появляются, то исчезают.

Обитает микроорганизм в илистых водоемах или же в застойной воде. Эти воды – идеальная среда обитания для амебы. Здесь микроорганизм находит достаточное питание в виде бактерий, других простейших или водорослей. Питается микроорганизм также с помощью ложноножек. Ток по цитоплазме стремится в одну точку, после чего в этом месте образуется выпячивание – псевдоподий (ложноножки). Из цитоплазмы выделяется пищеварительный сок, который окутывает добычу. Расщепляя пищу, сок переваривает ее часть в полезные вещества, которые идут на поддержания микроорганизма. Вся остальная часть выбрасывается из тела примитивного одноклеточного, в любой точке. Как выглядит амеба без микроскопа достаточно тяжело понять. В местах ее обитания можно наблюдать невооруженным глазом лишь небольшие белые сгустки, достигающие в размере не более половины миллиметра.

Виды амеб, опасных для человека

По статистике в организме каждого четвертого человека на планете живет ротовая амеба. Именно с ней часто связывают появление кариеса зубов. Научно доказанных фактов патогенного влияния данного вида на людей нет. Но этот микроорганизм выявляли при таких заболеваниях, как:

  • Периодонт;
  • Гайморит;
  • Остеомиелит.

Поэтому у медиков есть основания полагать, что в развитии этих заболеваний есть определенная роль одноклеточных.

Строение и цикл развития

Все тело данного вида корненожки состоит из жидкой цитоплазмы. Именно цитоплазма образует ложноножки. Внутри цитоплазмы заключено одно ядро. То есть амеба – это одна единственная клетка, внутри которой содержится весь организм. Жизненный цикл организма заключается в росте микроорганизма до определенного размера. Как только одноклеточное достигает определенной массы, происходит деление ядра. Тело и цитоплазма также разделяются на две части. Токовые импульсы остаются в одной из частей. В другой части они заново возникают. За один день может произойти несколько делений ядра.

Пути заражения

Передаваться амеба может от человека к человеку вместе со слюной или при пользовании одной посудой. Также заразиться можно от кашля уже больного человека. Амеба в тело человека может проникнуть с водой или пищей, через грязные руки.

Амеба обыкновенная – вид простейших существ из эукариот, типичный представитель рода Амебы.

Систематика . Вид амебы обыкновенной относится к царству — Животные, типу – Амебозои. Амебы объединены в класс Lobosa и отряд – Amoebida, семейство – Amoebidae, род – Amoeba.

Характерные процессы . Хотя амебы – это простые, состоящие из одной клетки существа, не имеющие никаких органов, им присущи все жизненно необходимые процессы. Они способны передвигаться, добывать пищу, размножаться, поглощать кислород, выводить продукты обмена.

Строение

Амеба обыкновенная – одноклеточное животное, форма тела неопределенная и изменяется из-за постоянного перемещения ложноножек. Размеры не превышают половины миллиметра, а снаружи ее тело окружено мембраной – плазмалемой. Внутри располагается цитоплазма со структурными элементами. Цитоплазма представляет собой неоднородную массу, где выделяют 2 части:

  • Наружная – эктоплазма;
  • внутренняя, с зернистой структурой – эндоплазма, где сосредоточены все внутриклеточные органеллы.

У амебы обыкновенной имеется крупное ядро, которое расположено примерно в центре тела животного. Оно имеет ядерный сок, хроматин и покрыто оболочкой, имеющей многочисленные поры.

Под микроскопом видно, что амеба обыкновенная образует псевдоподии, в которые переливается цитоплазма животного. В момент образования псевдоподии в нее устремляется эндоплазма, которая на периферических участках уплотняется и превращается в эктоплазму. В это время на противоположном участке тела эктоплазма частично превращается в эндоплазму. Таким образом, в основе образования псевдоподий лежит обратимое явление превращения эктоплазмы в эндоплазму и наоборот.

Дыхание

Амеба получает O 2 из воды, который диффундирует во внутреннюю полость через наружные покровы. Все тело участвует в дыхательном акте. Кислород, попавший в цитоплазму, необходим для расщепления питательных веществ на простые составляющие, которые Amoeba proteus сможет переварить, а еще для получения энергии.

Среда обитания

Обитает в пресной воде канав, небольших прудов и болот. Может жить также в аквариумах. Культуру амебы обыкновенной можно легко разводить в лабораторных условиях. Она является одной из крупных свободноживущих амеб, достигающих 50 мкм в диаметре и видимых невооруженным глазом.

Питание

Амеба обыкновенная передвигается с помощью ложноножек. Она преодолевает один сантиметр за пять минут. Передвигаясь, амебы наталкиваются на различные мелкие объекты: одноклеточные водоросли, бактерии, мелких простейших и т.д. Если объект достаточно мал, амеба обтекает его со всех сторон и он, вместе с небольшим количеством жидкости, оказывается внутри цитоплазмы простейшего.


Схема питания амебы обыкновенной

Процесс поглощения твердой пищи амебой обыкновенной называется фагоцитозом. Таким образом, в эндоплазме образуются пищеварительные вакуоли, внутрь которых из эндоплазмы поступают пищеварительные ферменты и происходит внутриклеточное пищеварение. Жидкие продукты переваривания проникают в эндоплазму, вакуоль с непереваренными остатками пищи подходит к поверхности тела и выбрасывается наружу.

Кроме пищеварительных вакуолей в теле амеб находится и так называемая сократительная, или пульсирующая, вакуоль. Это пузырек водянистой жидкости, который периодически нарастает, а достигнув определенного объема, лопается, опорожняя свое содержимое наружу.

Основная функция сократительной вакуоли - регуляция осмотического давления внутри тела простейшего. В связи с тем, что концентрация веществ в цитоплазме амебы выше, чем в пресной воде, создается разность осмотического давления внутри и вне тела простейшего. Поэтому пресная вода проникает в организм амебы, но ее количество остается в пределах физиологической нормы, поскольку пульсирующая вакуоль «откачивает» избыток воды из тела. Подтверждением этой функции вакуоли служит их наличие только у пресноводных простейших. У морских она или отсутствует, или сокращается очень редко.

Сократительная вакуоль кроме осморегуляторной функции частично выполняет и выделительную функцию, выводя вместе с водой в окружающую среду продукты обмена веществ. Однако основная функция выделения осуществляется непосредственно через наружную мембрану. Известную роль играет, вероятно, сократительная вакуоль в процессе дыхания, ибо проникающая в результате осмоса в цитоплазму вода несет растворенный кислород.

Размножение

Амебам свойственно бесполое размножение, осуществляемое путем деления надвое. Этот процесс начинается с митотического деления ядра, которое продольно удлиняется и перегородкой разъединяется на 2 самостоятельные органеллы. Они отдаляются и формируют новые ядра. Цитоплазма с оболочкой делится с помощью перетяжки. Сократительная вакуоль не разделяется, а попадает в одну из новообразованных амеб, во второй вакуоль формируется самостоятельно. Размножаются амебы достаточно быстро, за день процесс деления может происходить несколько раз.

В летний период времени амебы растут и делятся, но с приходом осенних холодов, из-за пересыхания водоемов, трудно найти питательные вещества. Поэтому амеба превращается в цисту, оказавшись в критических условиях и покрывается прочной двойной белковой оболочкой. При этом цисты легко распространяются за ветром.

Значение в природе и жизни человека

Amoeba proteus — важное составляющее экологических систем. Она регулирует численность бактериальных организмов в озерах и прудах. Очищает водную среду от чрезмерного загрязнения. Также является важным составляющим пищевых цепочек. Одноклеточные – еда для маленьких рыб и насекомых.

Ученые используют амебу как лабораторное животное, проводя на ней множество исследований. Очищает амеба не только водоемы, но поселившись в человеческом организме, она поглощает разрушенные частицы эпителиальной ткани пищеварительного тракта.

Виды амеб


Представители амёб разделяются на 3 основных типа, похожих по своим видовым характеристикам, а именно :

  • Кишечная.
  • Дизентерийная.
  • Амёба протей.

Амёба протей обладает размерами тела, не превышающими 5 мм. Живёт микроорганизм исключительно в воде (с низкой концентрацией соли) и питается водорослями.

Кишечная . Живёт только в прямой кишке, может питаться животной и растительной пищей.

Дизентерийная . Поселяется в кишечнике человека и провоцирует появление амебиаза. Имеет несколько жизненных форм, таких как:

  • Циста.
  • Вегетативная (мелкая).
  • Тканевая (крупная) вегетативная.

Непатогенные амёбы


Также изучены амёбы, не входящие в группу патогенных. К ним относятся:

Следовательно, сегодня можно в любой момент заразиться, каким-либо видом амёб, и в большинстве случаев заражение не проходит бесследно. Именно поэтому, во избежание нежелательных последствий требуется: придерживаться правил личной гигиены и проводить тщательную термообработку пищи.

У каждого вида бактерий имеются такие системы, необходимые для полноценной жизнедеятельности:

  • Репродуктивная.
  • Дыхательная.
  • Пищеварительная.

Цитоплазма окружена мембраной, состоящей из 3 слоёв: внутреннего, наружного и среднего.


  • Пищеварительные вакуоли.
  • Рибосомы.
  • Сократительные и опорные волокна.

Характеристика системы пищеварения


Пищеварительная система, является неотъемлемой структурной частью амёбы. В качестве пищи для них обычно выступают бактерии, находящиеся вокруг самого микроорганизма.

Питается бактерия следующим образом:

  • Перемещаясь в пространстве, она наталкивается на бактерии или другие мелкие одноклеточные организмы, водоросли.
  • Захватывает пищу ложноножками, путём фагоцитоза.
  • Обтекает её и поглощает телом.

Образовавшаяся, в результате этого вакуоль проникает внутрь цитоплазмы и там переваривается. В зависимости от среды обитания, амёбы могут питаться исключительно мелкими организмами (это относится к развивающимся особям), а взрослые могут поглощать и водоросли.

Важно, что амёба обладает нежным телом, может питаться и размножаться исключительно в условиях повышенной влажности. Попадая в сухую среду, она засыхает и подвергается гибели!

Дыхательная система

Органы дыхания располагаются по всему периметру телу бактерии. Вдыхая воздух, амёба перерабатывает его и выделяет углекислый газ, являющийся вредоносным для человеческого организма. В результате больной начинает страдать от сильнейшей интоксикации, спровоцированной отравлением газами.


Реакция амёбы на раздражение

Проводя исследования учёные заметили, что амеба реагирует на такие факторы:

  • Изменения в окружающей среде.
  • Яркий свет.

Реакция на засуху

В случае если водоём, в котором жил микроорганизм пересыхает, то бактерия начинает защищаться. Тогда он выделяет жидкость, покрывающую всё тело и бактерия становится цистообразной. В такой форме она может обитать, пока опять не попадёт во влажную среду, и не активизируется.

На этом этапе активность бактерии приостанавливается. Амёба не делится и не питается. Переносчиком цист является ветер. Он разносит их очень быстро, в результате чего заражаются и другие водоёмы.

Где обитает амеба


  • Внутри человеческого организма.
  • В водоёмах.
  • В воздухе (в виде цисты).

Размножение


 

Деление клетки амебы.

Кишечная амеба у человека: строение цист, жизненный цикл

Амеба-протей — это одноклеточное животное, сочетающий в себе функции клетки и самостоятельного организма. Внешне обыкновенная амеба напоминает маленький студенистый комочек размером всего 0,5 мм, постоянно меняющий свою форму из за того, что амеба постоянно образует выросты — так называемые ложноножки, и как бы перетекает с места на место.

За такую изменчивость формы тела амебе обыкновенной и дали имя древнегреческого бога Протея, который умел изменять свой облик.

Строение амебы

Организм амебы состоит из одной клетки, и содержит цитоплазму, окруженную цитоплазматической мембраной. В цитоплазме находится ядро и вакуоли — сократительная вакуоль, выполняющая функции органа выделения, и пищеварительная вакуоль, служащая для переваривания пищи. Наружный слой цитоплазмы амебы более плотный и прозрачный, внутренний — более текучий и зернистый.

Амеба протей живет на дне небольших пресных водоемов — в прудах, лужах, канавах с водой.

Питание амебы

Питается амеба обыкновенная другими одноклеточными животными и водорослями, бактериями, микроскопическими остатками умерших животных и растений. Перетекая по дну, амеба наталкивается на добычу, и обволакивает ее со всех сторон с помощью ложноножек. При этом вокруг добычи образуется пищеварительная вакуоль, в которую из цитоплазмы начинают поступать пищеварительные ферменты, благодаря которым пища переваривается и затем всасывается в цитоплазму. Пищеварительная вакуоль перемещается к поверхности клетки в любом месте, и сливается с клеточной оболочкой, после чего открывается наружу, и непереваренные остатки пищи выбрасываются во внешнюю среду. Переваривание пищи в одной пищеварительной вакуоли занимает у амебы протея от 12 часов до 5 дней.

Выделение

В процессе жизнедеятельности любого организма, в том числе и у амебы, образуются вредные вещества, которые должны выводиться наружу. Для этого у амебы обыкновенной имеется сократительная вакуоль, в которую из цитоплазмы постоянно поступают растворенные вредные продукты жизнедеятельности. После того, как сократительная вакуоль наполнится, она перемещается к поверхности клетки и выталкивает содержимое наружу. Этот процесс повторяется постоянно — ведь сократительная вакуоль наполняется за несколько минут. Вместе с вредными веществами в процессе выделения удаляется также избыток воды. У простейших, живущих в пресной воде, концентрация солей в цитоплазме выше, чем во внешней среде, и вода постоянно поступает в клетку. Если лишнюю воду не удалять, клетка просто лопнет. У простейших же, живущих в соленой, морской воде сократительной вакуоли нет, у них вредные вещества удаляются через наружную мембрану.

Дыхание

Амеба дышит растворенным в воде кислородом. Как это происходит и для чего необходимо дыхание? Для того, чтобы существовать, любому живому организму нужна энергия. Если растения получают ее в процессе фотосинтеза, используя энергию солнечного света, то животные получают энергию в результате химических реакций окисления органических веществ, поступивших с пищей. Главным участником этих реакций является кислород. У простейших кислород поступает в цитоплазму через всю поверхность тела и участвует в реакциях окисления, при этом и выделяется необходимая для жизнедеятельности энергия. Кроме энергии, образуется углекислый газ, вода и некоторые другие химические соединения, которые затем выделяются из организма.

Размножение амебы

Амебы размножаются бесполым путем, с помощью деления клетки надвое. При этом сначала делится ядро, затем внутри амебы появляется перетяжка, которая делит амебу на две части, в каждой из которых находится по ядру. Затем по этой перетяжке части амебы разделяются друг от друга. Если условия благоприятные, то амеба делится примерно раз в сутки.

В неблагоприятных условиях, например, при пересыхании водоема, похолодании, изменении химического состава воды, а также осенью амеба превращается в цисту. Тело амебы при этом становится округлым, ложноножки исчезают, и ее поверхность покрывается очень плотной оболочкой, защищающей амебу от высыхания и других неблагоприятных условий. Цисты амебы легко переносятся ветром, и таким образом происходит заселение амебами других водоемов.

Когда условия внешней среды становятся благоприятными, амеба выходит из цисты и начинает вести обычный, активный образ жизни, питаться и размножаться.

Раздражимость

Раздражимость – это свойство всех животных реагировать на различные воздействия (сигналы) внешней среды. У амебы раздражимость проявляется способностью реагировать на свет – амеба уползает от яркого света, а также на механическое раздражение и изменение концентрации соли: амеба уползает в сторону, противоположную от механического раздражителя или от помещенного рядом с ней кристаллика соли.

Один из представителей одноклеточных животных (простейших), имеющих возможность самостоятельно передвигаться, используя так называемые «ложноножки» называется – Амеба обыкновенная или протей. Относится к типу корненожек из-за своего непостоянного вида, образующихся, изменяющихся и исчезающих ложноножек.

Она имеет форму маленького, еле различимого невооруженным глазом студенистого комочка, не имеющего цвета, размером около 0,5 мм, главная характеристика которого изменчивость формы, отсюда и название – «амеба», значит «изменчивая».

Детально рассмотреть строение клетки обыкновенной амебы без микроскопа невозможно.

Любой водоем с пресной стоячей водой – идеальная среда обитания для амебы, особенно предпочитает пруды с большим содержанием гниющих растений и болота, в которых обитают в большом количестве бактерии.

При этом она сможет выжить во влаге почвы, в капле росы, в воде внутри человека, и даже в обычный гниющий лист дерева может приметить амёба, амёбы, другими словами напрямую зависят от воды.

Наличие большого количества микроорганизмов и одноклеточных водорослей, явный признак присутствия протея в воде, так как она ими питается.

Когда наступают отрицательные условия для существования (наступление осени, пересыхание водоема), простейшее перестает питаться. Приобретая форму шарика, на теле одноклеточного появляется специальная оболочка – циста. Внутри этой пленки организм может находиться продолжительное время.

В состоянии цисты клетка пережидает засуху или холода (при этом простейшее не перемерзает и не засыхает), пока условия окружения не изменятся или циста не будет перенесена ветром в более благоприятное место, жизнь клетки амебы останавливается.

Так защищается от неблагоприятных условий амеба обыкновенная, когда среда обитания становится пригодной для жизни, протей выходит из оболочки и продолжает вести обычный образ жизни.

Существует способность к регенерации, когда тело повреждено, она может достроить разрушенное место, главное условие для этого процесса – целостность ядра.

Строение и обмен веществ простейшего


Чтобы рассмотреть внутреннее строение организма одноклеточного, необходим микроскоп. Он позволит увидеть, что строение тела амебы, представляет собой целый организм, который в состоянии самостоятельно выполнить все функции необходимые для выживания.

Ее тело покрыто тонкой пленкой, которая называется , и содержащая полужидкую цитоплазму. Внутренний слой цитоплазмы более жидкий и менее прозрачный, чем наружный. В ней находятся ядро и вакуоли

Для пищеварения и избавления не переваренных остатков используется пищеварительная вакуоль. начинает осуществляться с контакта с пищей, на поверхности тела клетки появляется «пищевая чашечка». Когда стенки «чашечки» смыкаются, туда поступает пищеварительный сок, так появляется пищеварительная вакуоль.

Образовавшиеся питательные вещества в результате пищеварения используются для построения тела протея.

Процесс пищеварения может занимать от 12 часов до 5 дней. Такой тип питания называется фагоцитоз. Чтобы дышать, простейшее поглощает воду всей поверхностью тела, из которой потом выделяет кислород.

Для выполнения функции выделения излишков воды, а также регулирования давления внутри тела, у амебы имеется сократительная вакуоль, через нее также иногда может происходить выделение продуктов жизнедеятельности. Так происходит дыхание амебы, процесс называется – пиноцитоз.

Передвижение и реакция на раздражители


Для передвижения амеба обыкновенная использует ложноножку, другое их название – псевдоподия или корненожка (из-за сходства с корнями растений). Они могут образовываться в любом месте на поверхности тела. Когда цитоплазма переливается к краю клетки, на поверхности протея появляется выпуклость, образуется ложная ножка.

В нескольких местах ножка прикрепляется к поверхности, в нее постепенно перетекает оставшаяся цитоплазма.

Таким образом, происходит передвижение, скорость которого примерно 0,2 мм в минуту. Клетка может образовать несколько псевдоподий. Организм реагирует на различные раздражители, т.е. обладает способностью чувствовать.

Размножение


Питаясь, клетка растет, увеличивается, наступает процесс, ради которого живут все существа – размножение.

Размножение амебы обыкновенной, процесс самый простой из известных науке, происходит бесполым путем, и подразумевает собой деление на части. Размножение начинается со стадии, когда ядро амебы начинает вытягиваться и сужаться посередине пока не разделится на две части. В это время тело самой клетки так же разделяется. В каждой из этих частей остаётся по ядру.

В конце концов, цитоплазма между двумя частями клетки разрывается, и образующийся новый клеточный организм отделяется от материнского, в котором остается сократительная вакуоль. Стадия деления обусловлена еще тем, что протей перестает питаться, останавливается пищеварение, тело приобретает округлый вид.

Таким образом, размножается протей. В течение суток клетка может размножаться несколько раз.

Значение в природе


Являясь важным элементом любой экосистемы, амеба обыкновенная регулирует количество бактерий и микроорганизмов в среде ее обитания. Тем самым поддерживая чистоту водоемов.

Таким образом, являясь частью пищевой цепочки, ею питаются мелкие рыбки, рачки и насекомые для которых она является пищей.

Тело амёбы протей (рис. 16) покрыто плазматической мембраной . Всеми дей-ствиями амебы руководит ядро . Цитоплазма находится в постоянном движении. Если её микропотоки устремляются к одной точке поверхности амебы, там появляется выпя-чивание. Оно увеличивается в размерах, становится вы-ростом тела. Это ложноножка, которая прикрепляется к частицам ила. В нее постепенно перетекает все содержимое амебы. Так происходит передвижение амебы с места на место.

Амеба протей — всеядное животное. Ее пищу составляют бактерии , одноклеточные растения и живот-ные, а также разлагающиеся органические частицы . Пере-двигаясь, амеба наталкивается на пищу и обтекает ее со всех сторон и та оказывается в цитоплазме (рис. 16). Во-круг пищи формируется пищеварительная вакуоль, куда поступают пищеварительные секреты, переваривающие пи-щу . Такой способ захвата пищи называется клеточным заглатыванием.

Амеба может питаться и жидкой пищей, используя другой способ — клеточное питье. Происходит это так. Снаружи внутрь цитоплазмы впячивается тонкая трубочка, в которую засасывается жидкая пища. Вокруг нее обра-зуется пищеварительная вакуоль.

Рис. 16. Строение и питание амебы

Выделение

Как и у бодо, вакуоль с непереваренными остатками пищи перемещается к поверхности тела амебы и ее содер-жимое выбрасывается наружу. Выделение вредных веществ жизнедеятельности и из-бытка воды происходит при помощи сокра-тительной (пульсирующей) вакуоли.

Дыхание

Дыхание у амебы осуществляется так же, как у бодо (см. Бодо — животное жгутиконосец ).

Каждый вид простейших животных имеет свое строение, свою форму, в том числе и очень сложную и причудливую. Она образуется не случайно, и сохраняется очень долго: на дне океана в отложениях, образовавшихся десятки миллионов лет назад, находят точно такие же раковины фораминифер.

Такое возможно потому, что у каждого вида построение организма осуществляется по определенному плану, опре-деленной программе. Эта программа записана особым ко-дом на длинных молекулах, хранящихся в ядре клетки , точно так же, как программы для компьютера записывают на магнитном жестком диске. Перед размножением с программы списывается копия, и передается потомству. Эти программы можно называть генетически закрепленными, или врожденными. Материал с сайта

Ядро клетки содержит не только программы, как ее построить, но и как действовать. Они определяют действия животного — его поведение . Подобно тому, как у одних простейших программы построения формы тела приводят к простой форме, а у других к сложной, так и программы поведения могут быть и простыми, и сложными. Разно-образие животных по сложности программы поведения не меньше, чем разнообразие их форм.

Амеба тоже реагирует на многие сигналы, запуская свои программы поведения. Так, она распознает разные виды микроскопических организмов, служащих ей пищей; уходит от яркого света; определяет концентрацию веществ в среде обитания; уходит от постоянного механического раздражения.

Происхождение саркодовых

В пре-делах жгутиконосцев проходит зыбкая граница (отличи-тельная черта) между двумя царствами — растениями и животными. На первый взгляд кажется, что между жи-вотными жгутиконосцами и саркодовыми имеется резкое различие: первые передвигаются при помощи жгутиков, вторые — с использованием ложноножек. Но оказывается, что саркодовые, считавшиеся ранее древнейшими простей-шими, ныне рассматриваются как эволюционные потомки животных жгутиконосцев. Дело в том, что у многих сар-кодовых во время размножения появляются жгутики, как, например, у половых клеток радиолярий и фораминифер. Следовательно, жгутики когда-то были и у саркодовых. Более того, известны животные жгутиконосцы (например, жгутиковая амеба), принимающие форму амебы для за-хвата пищи при помощи ложноножек. Все это позволяет считать, что саркодовые произошли от древних жгутиконосцев и утратили жгутики при дальнейшей эво-люции.

На этой странице материал по темам:

  • Ложноножки амебы это

  • Систематика амебы протей

  • Сообщение на тему амёба протей

  • Амебы протея реферат

  • Общее строение амебы протей

Вопросы по этому материалу:

Амебы - это род одноклеточных организмов-эукариот (относятся к простейшим). Считаются животноподобными, так как питаются гетеротрофно.

Строение амеб обычно рассматривают на примере типичного представителя - амебы обыкновенной (амебы протея).

Амеба обыкновенная (далее амеба) обитает на дне пресноводных водоемов с загрязненной водой. Ее размер колеблется от 0,2 мм до 0,5 мм. По внешнему виду амеба похожа на бесформенный бесцветный комок, способный менять свою форму.

Клетка амебы не имеет жесткой оболочки. Она образует выпячивания и впячивания. Выпячивания (цитоплазматические выросты) называют ложноножками или псевдоподиями . Благодаря им амеба может медленно двигаться, как бы перетекая с места на место, а также захватывать пищу. Образование ложноножек и перемещение амебы происходит за счет движения цитоплазмы, которая постепенно перетекает в выпячивание.

Хотя амеба одноклеточный организм и не может быть речи об органах и их системах, ей свойственны почти все процессы жизнедеятельности, характерные для многоклеточных животных. Амеба питается, дышит, выделяет вещества, размножается.

Цитоплазма амебы не однородна. Выделяют более прозрачный и плотный наружный слой (эк т оплазма ) и более зернистый и жидкий внутренний слой цитоплазмы (эндоплазма ).

В цитоплазме амебы находятся различные органеллы, ядро, а также пищеварительная и сократительная вакуоли.

Питается амеба различными одноклеточными организмами и органическими остатками. Пища обхватывается ложноножками и оказывается внутри клетки, образуется пищеварительн ая вакуоль . В нее поступают различные ферменты, расщепляющие питательные вещества. Те, которые нужны амебе, потом поступают в цитоплазму. Ненужные остатки пищи остаются в вакуоли, которая подходит к поверхности клетки и из нее все выбрасывается.

«Органом» выделения у амебы является сократительная вакуоль . В нее поступают излишки воды, ненужные и вредные вещества из цитоплазмы. Заполненная сократительная вакуоль периодически подходит к цитоплазматической мембране амебы и выталкивает наружу свое содержимое.

Дышит амеба всей поверхностью тела. В нее из воды поступает кислород, из нее - углекислый газ. Процесс дыхания заключается в окислении кислородом органических веществ в митохондриях. В результате выделяется энергия, которая запасается в АТФ, а также образуются вода и углекислый газ. Энергия, запасенная в АТФ, далее расходуется на различные процессы жизнедеятельности.

Для амебы описан только бесполый способ размножения путем деления надвое. Делятся только крупные, т. е. выросшие, особи. Сначала делится ядро, после чего клетка амебы делится перетяжкой. Та дочерняя клетка, которая не получает сократительную вакуоль, образует ее впоследствии.

С наступлением холодов или засухи амеба образует цисту . Цисты имеет плотную оболочку, выполняющую защитную функцию. Они достаточно легкие и могут разноситься ветром на большие расстояния.

Амеба способна реагировать на свет (уползает от него), механическое раздражение, наличие в воде определенных веществ.

Амёба протей или обыкновенная амёба – лат. Amoeba proteus. Амёба протей или представляет собой огромный амебоидный организм, представитель класса лобозные амёбы, относится к типу простейшие . Встречается в пресных водах, аквариумах .

В капле воды, взятой из пруда, болота, канавы или аквариума, если ее рассматривать под микроскопом, открывается целый мир живых существ. Среди них имеются крошечные полупрозрачные беспозвоночные животные, непрестанно изменяющие форму своего тела.

Обыкновенная амеба, как и инфузория туфелька – самые простые по своему строению животные. Чтобы рассмотреть обыкновенную амёбу, необходимо поместить каплю воды с амебами под микроскоп. Все тело обыкновенной амебы состоит из крошечного студенистого комочка живого вещества – протоплазмы с ядром внутри. Из курса ботаники известно, что комочек протоплазмы с ядром – это клетка. Значит, обыкновенная амёба – одноклеточное беспозвоночное животное. Тело её состоит только из протоплазмы и ядра.

Наблюдая за амебой протей под микроскопом, мы замечаем, что через некоторое время форма ее тела изменяется. Амеба протей не имеет постоянной формы тела. Поэтому она и получила название «амёба», что в переводе с греческого языка означает «изменчивая».

Также под микроскопом, можно заметить, что она медленно переползает на затемненную часть стекла. Яркий солнечный свет быстро убивает обыкновенных амеб. Если внести в капельку воды кристаллик поваренной соли, амеба пере-стает двигаться, втягивает ложноножки и приобретает шарообразную форму. Таким образом, обыкновенные амебы уменьшают поверхность тела, на которую действует вредный для них раствор соли. Значит, обыкновенные амебы способны отвечать на внешние раздражения. Эта способность называется раздражимостью. Она связывает обыкновенную амебу с внешней средой и имеет защитное значение.

Обыкновенных амеб можно найти даже в канавах и лужах, образовавшихся совсем недавно. Когда водоем, в котором живут обыкновенные амебы и другие простейшие, начинает высыхать, они не погибают, а покрываются плотной оболочкой, превращаясь в цисту. В таком состоянии амебы и другие простейшие могут переносить как высокую температуру (до +50, +60°), так и сильное охлаждение (до – 273 градусов). Ветром цисты разносятся на значительные расстояния. Когда такая циста снова попадает в благоприятные условия, она начинает питаться и размножаться. Благодаря такому приспособлению, обыкновенные амёбы переживают неблагоприятные для них условия жизни и расселяются по всей планете. Передвижение амёбы происходит при помощи ложноножек.

Питается амёба бактериями, водорослями, микроскопическими грибами. С помощью ложноножек (из-за которых осуществляется перемещение амёбы), захватывает пищу.

Амёбе протей, также, как и всем животным, необходим кислород. Дыхание амёбы осуществляется за счёт усваивания кислорода из воды и выделением углекислого газа.

Размножаются обыкновенные амёбы делением. При этом ядро амебы удлиняется, а затем делится пополам.

Обыкновенная амеба под микроскопом – Статьи на сайте Четыре глаза


Полезная информация

Главная » Статьи и полезные материалы » Микроскопы » Статьи о микроскопах, микропрепаратах и исследованиях микромира » Амеба: фото под микроскопом

Амеба – одноклеточный, или простейший, организм, который живет во многих водоемах, а иногда даже и в болотах. Она предпочитает спокойную воду – пруды и озера, – прекрасно чувствует себя в аквариуме. Амеба питается бактериями, водорослями и продуктами гниения, неприхотливо и легко размножается в лабораторных условиях. Чтобы увидеть амебу под микроскопом, надо лишь взять нескольких капель уличной воды, поместить их под объектив и выставить увеличение в 50–100 крат. Для исследования простейших подходит любой биологический микроскоп начального уровня.

Изучая амебу обыкновенную под микроскопом, вы увидите, что она постоянно меняет свою форму. Она похожа на плотный комочек с небольшими выростами (ложноножками). Ложноножки помогают ей в движении и поиске пищи, поэтому амеба постоянно выпячивает их то в одну, то в другую сторону. Кроме ложноножек, под микроскопом можно увидеть ядро и сократительную вакуоль. Последнюю амеба использует для выделения газов в процессе дыхания. Амеба обыкновенная – фото под микроскопом прикреплено к статье – интересна еще и тем, что может реагировать на прикосновения. Если дотронуться до нее тонкой иголкой, она мгновенно втянет все ложноножки и свернется в маленький комочек.

Большинство амеб безобидны и безопасны для человека. Кроме дизентерийной амебы – под микроскопом она выглядит как обычная, но с сильно укороченными ложноножками. Этот вид простейших был открыт в 1875 году русским врачом-терапевтом Федором Лёшем. Дизентерийная амеба вызывает тяжелейшее паразитарное заболевание – амебиаз. Его сложно обнаружить даже при помощи современных средств диагностики, а при отсутствии лечения амебиаз может привести и к смерти.

Под микроскопом мы рекомендуем изучать только обыкновенных амеб и других безопасных простейших. Для этого вам понадобится современный оптический прибор, который вы можете приобрести в нашем интернет-магазине. Звоните, пишите – наши консультанты с радостью помогут вам выбрать подходящий микроскоп для исследований!

4glaza.ru
Май 2018

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.


Смотрите также

Другие обзоры и статьи о микроскопах, микропрепаратах и микромире:

  • Видео! Микроскоп Levenhuk 870T: видеосравнение фильтрованной и нефильтрованной воды (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: жизнь в капле воды с болота (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видео радиоактивной воды (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видеообзор (канал MAD SCIENCE, Youtube.com)
  • Видео! Микроскоп Levenhuk 870T: видео соленой воды (канал MAD SCIENCE, Youtube.com)
  • Медицинские микроскопы Levenhuk MED: обзорная статья на сайте levenhuk.ru
  • Видео! Портативный микроскоп Bresser National Geographic 20–40x и другие детские приборы линейки: видеообзор (канал «Татьяна Михеева», Youtube.com)
  • Книги знаний издательства Levenhuk Press: подробный обзор на сайте levenhuk.ru
  • Видео! Книга знаний в 2 томах. «Космос. Микромир»: видеопрезентация (канал LevenhukOnline, Youtube.ru)
  • Видео! Видео бактерий под микроскопом Levenhuk Rainbow 2L PLUS (канал «Микромир под микроскопом», Youtube.ru)
  • Обзор микроскопа Levenhuk Rainbow 50L PLUS на сайте levenhuk.ru
  • Видео! Подробный обзор серии детских микроскопов Levenhuk LabZZ M101 (канал Kent Channel TV, Youtube.ru)
  • Обзор набора оптической техники Levenhuk LabZZ MTВ3 (микроскоп, телескоп и бинокль) на сайте levenhuk.ru
  • Видео! Микроскоп Levenhuk DTX 90: распаковка и видеообзор цифрового микроскопа (канал Kent Channel TV, Youtube.ru)
  • Видео! Видеопрезентация увлекательной и красочной книги для детей «Невидимый мир» (канал LevenhukOnline, Youtube.ru)
  • Видео! Большой обзор биологического микроскопа Levenhuk 3S NG (канал Kent Channel TV, Youtube.ru)
  • Микроскопы Levenhuk Rainbow 2L PLUS
  • Видео! Микроскопы Levenhuk Rainbow и LabZZ (канал LevenhukOnline, Youtube.ru)
  • Микроскоп Levenhuk Rainbow 2L PLUS Lime\Лайм. Изучаем микромир
  • Выбираем лучший детский микроскоп
  • Видео! Микроскопы Levenhuk Rainbow 2L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 2L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскопы Levenhuk Rainbow 50L PLUS: видеообзор серии микроскопов (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D2L: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Видео! Микроскоп Levenhuk Rainbow D50L PLUS: видеообзор цифрового микроскопа (канал LevenhukOnline, Youtube.ru)
  • Обзор биологического микроскопа Levenhuk Rainbow 50L
  • Видео! Видеообзор школьных микроскопов Levenhuk Rainbow 2L и 2L PLUS: лучший подарок ребенку (канал KentChannelTV, Youtube.ru)
  • Видео! Как выбрать микроскоп: видеообзор для любителей микромира (канал LevenhukOnline, Youtube.ru)
  • Галерея фотографий! Наборы готовых микропрепаратов Levenhuk
  • Микроскопия: метод темного поля
  • Видео! «Один день инфузории-туфельки»: видео снято при помощи микроскопа Levenhuk 2L NG и цифровой камеры Levenhuk (канал LevenhukOnline, Youtube.ru)
  • Видео! Обзор микроскопа Levenhuk Rainbow 2L NG Azure на телеканале «Карусель» (канал LevenhukOnline, Youtube.ru)
  • Обзор микроскопа Levenhuk Фиксики Файер
  • Совместимость микроскопов Levenhuk с цифровыми камерами Levenhuk
  • Как работает микроскоп
  • Как настроить микроскоп
  • Как ухаживать за микроскопом
  • Типы микроскопов
  • Техника приготовления микропрепаратов
  • Галерея фотографий! Что можно увидеть в микроскопы Levenhuk Rainbow 50L, 50L PLUS, D50L PLUS
  • Сетка или шкала. Микроскоп и возможность проведения точных измерений
  • Обычные предметы под объективом микроскопа
  • Насекомые под микроскопом: фото с названиями
  • Инфузории под микроскопом
  • Изобретение микроскопа
  • Как выбрать микроскоп
  • Как выглядят лейкоциты под микроскопом
  • Что такое лазерный сканирующий микроскоп?
  • Микроскоп люминесцентный: цена высока, но оправданна
  • Микроскоп для пайки микросхем
  • Иммерсионная система микроскопа
  • Измерительный микроскоп
  • Микроскопы от самых больших профессиональных моделей до простых детских
  • Микроскоп профессиональный цифровой
  • Силовой микроскоп: для серьезных исследований и развлечений
  • Лечение зубов под микроскопом
  • Кровь человека под микроскопом
  • Галогенные лампы для микроскопов
  • Французские опыты – микроскопы и развивающие наборы от Bondibon
  • Наборы препаратов для микроскопа
  • Юстировка микроскопа
  • Микроскоп для ремонта электроники
  • Операционный микроскоп: цена, возможности, сферы применения
  • «Шкаловой микроскоп» – какой оптический прибор так называют?
  • Бородавка под микроскопом
  • Вирусы под микроскопом
  • Принцип работы темнопольного микроскопа
  • Покровные стекла для микроскопа – купить или нет?
  • Увеличение оптического микроскопа
  • Оптическая схема микроскопа
  • Схема просвечивающего электронного микроскопа
  • Устройство оптического микроскопа у теодолита
  • Грибок под микроскопом: фото и особенности исследования
  • Зачем нужна цифровая камера для микроскопа?
  • Предметный столик микроскопа – что это и зачем он нужен?
  • Микроскопы проходящего света
  • Органоиды, обнаруженные с помощью электронного микроскопа
  • Паук под микроскопом: фото и особенности изучения
  • Из чего состоит микроскоп?
  • Как выглядят волосы под микроскопом?
  • Глаз под микроскопом: фото насекомых
  • Микроскоп из веб-камеры своими руками
  • Микроскопы светлого поля
  • Механическая система микроскопа
  • Объектив и окуляр микроскопа
  • USB-микроскоп для компьютера
  • Универсальный микроскоп – существует ли такой?
  • Песок под микроскопом
  • Муравей через микроскоп: изучаем и фотографируем
  • Растительная клетка под световым микроскопом
  • Цифровой промышленный микроскоп
  • ДНК человека под микроскопом
  • Как сделать микроскоп в домашних условиях
  • Первые микроскопы
  • Микроскоп стерео: купить или нет?
  • Как выглядит раковая клетка под микроскопом?
  • Металлографический микроскоп: купить или не стоит?
  • Флуоресцентный микроскоп: цена и особенности
  • Что такое «ионный микроскоп»?
  • Грязь под микроскопом
  • Как выглядит клещ под микроскопом
  • Как выглядит червяк под микроскопом
  • Как выглядят дрожжи под микроскопом
  • Что можно увидеть в микроскоп?
  • Зачем нужны исследовательские микроскопы?
  • Бактерии под микроскопом: фото и особенности наблюдения
  • На что влияет апертура объектива микроскопа?
  • Аскариды под микроскопом: фото и особенности изучения
  • Как использовать микропрепараты для микроскопа
  • Изучаем ГОСТ: микроскопы, соответствующие стандартам
  • Микроскоп инструментальный – купить или нет?
  • Где купить отсчетный микроскоп и зачем он нужен?
  • Атом под электронным микроскопом
  • Как кусает комар под микроскопом
  • Как выглядит муха под микроскопом
  • Амеба: фото под микроскопом
  • Подкованная блоха под микроскопом
  • Вша под микроскопом
  • Плесень хлеба под микроскопом
  • Зубы под микроскопом: фото и особенности наблюдения
  • Снежинка под микроскопом
  • Бабочка под микроскопом: фото и особенности наблюдений
  • Самый мощный микроскоп – как выбрать правильно?
  • Рот пиявки под микроскопом
  • Мошка под микроскопом: челюсти и строение тела
  • Микробы на руках под микроскопом – как увидеть?
  • Вода под микроскопом
  • Как выглядит глист под микроскопом
  • Клетка под световым микроскопом
  • Клетка лука под микроскопом
  • Мозги под микроскопом
  • Кожа человека под микроскопом
  • Кристаллы под микроскопом
  • Основное преимущество световой микроскопии перед электронной
  • Конфокальная флуоресцентная микроскопия
  • Зондовый микроскоп
  • Принцип работы сканирующего зондового микроскопа
  • Почему трудно изготовить рентгеновский микроскоп?
  • Макровинт и микровинт микроскопа – что это такое?
  • Что такое тубус в микроскопе?
  • Главная плоскость поляризатора
  • На что влияет угол между главными плоскостями поляризатора и анализатора?
  • Назначение поляризатора и анализатора
  • Метод изучения – микроскопия на практике
  • Микроскопия осадка мочи: расшифровка
  • Анализ «Микроскопия мазка»
  • Сканирующая электронная микроскопия
  • Методы световой микроскопии
  • Оптическая микроскопия (световая)
  • Световая, люминесцентная, электронная микроскопия – разные методы исследований
  • Темнопольная микроскопия
  • Фазово-контрастная микроскопия
  • Поляризаторы естественного света
  • Шотландский физик, придумавший поляризатор
  • Механизм фокусировки в микроскопе
  • Что такое полевая диафрагма?
  • Микроскоп Микромед: инструкция по эксплуатации
  • Микроскоп Микмед: инструкция по эксплуатации
  • Где найти инструкцию микроскопа «ЛОМО»?
  • Микроскопы Micros: руководство пользователя
  • Какую функцию выполняют зажимы на микроскопе
  • Рабочее расстояние объектива микроскопа
  • Микропрепарат для микроскопа своими руками
  • Метод висячей капли
  • Метод раздавленной капли
  • Тихоходка под микроскопом
  • Аппарат Гольджи под микроскопом
  • Чем занять детей дома?
  • Чем заняться на карантине дома?
  • Чем заняться школьникам на карантине?
  • Выбираем микроскоп: отзывы имеют значение?
  • Микроскоп для школьника: какой выбрать?
  • Немного об оптовой закупке микроскопов и иной оптической техники
  • Во сколько увеличивает лупа?
  • Где купить лампу-лупу – косметологическую модель с подсветкой?
  • Какую купить лампу-лупу для маникюра?
  • Можно ли купить лампу-лупу для наращивания ресниц в интернет-магазине?
  • Лампа-лупа косметологическая на штативе: купить домой или нет?
  • Лупа бинокулярная с принадлежностями
  • Как выглядит лупа для нумизмата?
  • Лупа-лампа – лупа для рукоделия с подсветкой
  • «Лупа на стойке» – что это за оптический прибор?
  • Лупа – проектор для увеличенного изображения
  • Делаем лупу своими руками
  • Основные функции лупы
  • Где найти лупу?
  • Лупа бинокулярная – цена возможностей
  • Лупа канцелярская: выбираем оптическую технику для офиса
  • Как выглядит коронавирус под микроскопом?
  • Как называется главная часть микроскопа?
  • Где купить блоки питания для микроскопа?
  • Строение объектива микроскопа
  • Как выглядят продукты под микроскопом
  • Что покажет музей микроминиатюр

Это интересно. Чем опасна дизентерийная амёба

Дизентерийная амёба – представитель класса саркодовых, родственник свободноживущих амёб. Она паразитирует в организме человека и других приматов.

В большинстве случаев дизентерийная амёба не вызывает никаких заболеваний у человека: примерно 90% инфекций протекают бессимптомно и не требуют лечения. Амёбы мирно существуют и размножаются в просвете толстого кишечника, питаясь бактериями и остатками непереваренной пищи, которых они поглощают путем фагоцитоза. Человек при этом здоров, но является носителем дизентерийной амёбы. При размножении амёбы образуют цисты, которые выходят в окружающую среду и могут заражать других.


Внешний вид дизентерийной амёбы. Видны ядро и цитоплазма

Однако в некоторых случаях дизентерийные амёбы проникают в слизистую оболочку кишечника, вырабатывая специальные ферменты, которые поражают стенку кишки и приводят к образованию язв. В такой форме амёбы питаются эритроцитами или всасывают питательные вещества через плазматическую мембрану. У больного наблюдаются признаки интоксикации организма, боли в животе, кровавая диарея, обезвоживание. При отсутствии лечения нередко развивается амёбный абсцесс печени, так как патогенные формы амёб могут проникать в кровеносные сосуды и поражать другие органы человека.


Амёбы с поглощенными эритроцитами

Дизентерийная амёба не имеет жесткой формы тела. От внешней среды клетка отграничена плазматической мембраной. Внутри клетки хорошо заметно крупное ядро. Поскольку дизентерийная амёба обитает в бескислородной среде, у нее редуцированы митохондрии: вместо них обнаруживаются некрупные тельца, получившие название митосом, не имеющие митохондриального генома и не выполняющие типичных функций митохондрий. Энергию амёба получает за счет брожения. Для дизентерийных амёб свойственно спиртовое брожение, с преобразованием глюкозы в пируват, а пирувата в этанол.

Интересно, что у дизентерийной амёбы ранее не удавалось обнаружить также типичных мембранных структур эукариотических клеток – эндоплазматического ретикулума и аппарата Гольджи. Однако, по последним данным, эндоплазматический ретикулум у дизентерийных амёб все-таки есть.


Эндоплазматический ретикулум в живой дизентерийной амёбе.
Зеленым цветом окрашен белок, локализованный в ЭПР.
Интересно, что ЭПР, образующий единую сеть в клетке, отсутствует в ложноножке амёбы.

Амеба - Справочник химика 21

    Если смотреть с. Луны, гамма цветов земной атмосферы с водными пространствами и горными массивами представляет собой потрясающе красивое зрелище. Другие планеты тоже обладают своей экзотической красотой, но, как показали исследования с помощью автоматически управляемых космических аппаратов, их красота несовместима с жизнью. На Земле же живут миллионы организмов, от одноклеточных амеб до таких громадин, как секвойя или слон. [c.369]
    Ядро бактериальной клетки. Примерно 1—2% веса сухой массы микроорганизмов приходится на ДНК, в которой заложена генетическая информация организма. У большинства микроорганизмов имеются области (или несколько областей), в которой сконцентрировано основное количество ДНК, имеющие определенную структуру (или органеллу) и называющиеся ядром. Ядро (или ядерное вещество) связано с цитоплазматической мембраной, независимо от того, окружено оно элементарными мембранами (как у амебы) или не имеет их (как у бактерий и сине-зеленых водорослей). Ядерное вещество активизируется в период размножения н ири наступлении возрастных изменений, связанных со старением клетки. [c.250]

    Любые вариации в такой системе имеют своим следствием или гибель всей структуры (что на протяжении добиологического периода происходило несчетное число раз), или такое изменение биологической системы, которое ограничивает условия стабилизации ее в общей системе среда — организм развитием низших кодов, характерных, например, для популяций бактерий или низших органов. Эти формы жизни далее уже не эволюционируют, так как исчерпаны их возможности в создании высших кодов, и поэтому невозможно, например, превращение амебы в позвоночное. [c.394]

    Цитоплазма амеб (на границе с маслом).  [c.133]

    Цитоплазма амеб (на границе с маслом)............. [c.156]

    Известно, что каждый живой (добавим — земной) организм с достаточно высокой степенью справедливости и строгости может рассматриваться как водный раствор. Именно отсюда проистекают различного калибра остроумия шутки, что если человек чем-либо и отличается от огурца, то лишь несколько меньшим содержанием воды. Но факт остается фактом практически все химические процессы, обеспечивающие жизнедеятельность любого живого организма от амебы до слона — это процессы в водных растворах. Отсюда следует как логичное, так и бесспорное заключение о том, что и те химические реакции, предшествующие возникновению живого вещества, также протекали в воде. [c.69]

    Аэротенки — огромные резервуары из железобетона, в которых очистка происходит с помощью активного ила из бактерий и микроскопических животных, которые бурно развиваются в этих сооружениях, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего с потоком подаваемого воздуха. Бактерии, склеивающиеся в хлопья, вьщеляют в среду ферменты, разрушающие органические загрязнения. Ил с хлопьями оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, не слипшиеся в хлопья, тем самым омолаживают бактериальную массу ила. Сточные воды сначала подвергают механической, а после химической очистке для удаления болезнетворных бактерий путем хлорирования жидким хлором или хлорной известью. Для дезинфекции используют также ультразвук, озонирование, электролиз и другие методы. [c.30]


    Лизосомы представляют собой пузырьки, окруженные одиночной мембраной и содержащие полный набор ферментов для расщепления практически любого компонента клетки. Лизосомы, по-видимому, образуются из мембран Гольджи. В клетках, способных захватывать частички пищи (например, у амеб), лизосомы являются источником ферментов для ее расщепления. Лизосомы переваривают также отработанные или излишние клеточные компоненты, в том числе митохондрии. Лизосомы — жизненно необходимые клеточные органеллы [23, 24] некоторые серьезные болезни человека обусловлены отсутствием именно, специфических лизосомных ферментов. [c.34]

    Важной составной частью цитоплазмы являются микротрубочки— полые стерженьки, наружный диаметр которых составляет 24 2 нм, а внутренний 13—15 нм. Наиболее удивительна их форма в жгутиках и ресничках эукариотических клеток (рис. 1-5). Устойчивые микротрубочки ресничек являются, по-видимому, неотъемлемой частью аппарата, обеспечивающего движение жгутиков (Приведенный справа рисунок взят из работы .) Лабильные (т. е. образующиеся, а затем распадающиеся) микротрубочки обнаруживаются чаще всего в цитоплазме клеток, способных к перемещению (например, в псевдоподиях амеб). Митотическое веретено (гл. 15, разд. Г.9) представляет собой набор микротрубочек, обеспечивающих перемещения хромосом в делящейся клетке. Микротрубочки обнаруживаются также в плоскостях деления растительных клеток. [c.276]

    Цитоплазма амеб (на границе с маслом). . 0,5—1,5 Цитоплазма яиц морского ежа (иа границе [c.77]

    Способность образовывать огромные площади внутри клетки например, в печени на 1 мг белка приходится 0,5 м2 мембран. Природа создала клетки и субклеточные органеллы такими маленькими, чтобы нормальная жизнедеятельность протекала на больших площадях мембран. Интенсивность процессов жизнедеятельности тем выше, чем больше соотношение поверхность/объем. Примером тому может служить деление бактерий в течение 15-30 мин, а вот амеба делится в течение дня. [c.108]

    Корни ипекакуаны издавна известны как средство, вызывающее рвоту. Это свойство определяется присутствием в нем эметина. В современной же медицине он имеет значение как препарат для лечения амебной дизентерии. Токсическое действие на дизентерийных амеб в кишечнике он проявляет в дозах, значительно меньших, чем требуется для вызывания рвотного рефлекса. [c.480]

    Выделение амеб на средах Павловой, Рейса, с печеночным экстрактом. Заражение 2 — 3-недельных крысят, котят, щенков, морских свинок [c.338]

    Среда с печеночным экстрактом ИХН — 1000 мл, МПБ — 20 мл, печеночный экстракт — 20 мл, глюкоза — 2,5 г, натрия фосфат и калия гидрофосфат — по 0,45 г. Смесь стерилизуют, охлаждают и добавляют нативную сыворотку крови крупного рогатого скота (1 часть на 7 —9 частей смеси). Полученную среду разливают в стерильные пробирки по 8 — 10 мл. На этой среде обильно растут дизентерийные амебы. [c.347]

    Тиксотропные свойства приписывают таким сложным физиологическим структурам, как протоплазма и мускульная ткань. Раздражая иголкой тело малых лимфоцитов, Петтерфи наблюдал быстрое разжижение их протоплазмы, которая вновь быстро унлотнялас1>. Аналогичное явление можно наблюдать ири раздражении иголкой мелких амеб. Явлением тиксотропии легко объясняется наблюдение Кюне, который видел, как вдоль мышечного поперечнополосатого волоко1П1а лягушки продвигалась нематода с такой же легкостью, как в обычной жидкости. Дело в том, что нематода прн своем продвижении, механически воздействуя на тиксо-тропную субстанцию мускульного волокна, вызывала превращение его в золь, который после прохождения через него нематоды вновь обретал структуру. [c.380]

    Класс Sar odina (рис. 90). Представителем этого класса является обыкновенная амеба. Она встречается в загрязненной воде на дне, в иле. Это бесцветный студенистый комочек, постоянно меняющий свою форму. Тело амебы состоит из полужидкой цитоплазмы с заключенным в ней небольшим пузыревидным ядром. По направлению движения амебы на ее теле появляются вырос- [c.274]

    Зеленая эвглена Euglena) подобно обыкновенной амебе обитает в стоячей воде. Тело эвглены имеет вытянутую форму. Наружный слой цитоплазмы плотный, поэтому этот организм почти не изменяет форму при движении. Эвглена может слегка сокращаться, становясь при этом короче и шире. На одном конце у эвглены есть [c.276]

    Производные имидазола и триазола - азолы, к к-рым относят, в частности, 5-нитроимидазолы. Последние активны в отношении простейших (трихомонады, дизентерийная амеба, лямблии), анаэробных бактерий, обладают радиосенсибилизирующей активностью (повышают эффект лучевой терапии) и увеличивают чувствительность организма к алкоголю. Продукты восстановления (под действием нитро-редуктаз) этих лек. ср-в ингибируют аштез и вызывают деградащ1ю ДНК в микробной клетке. Предложено более 20 5-нитро имидазолов, важнейший из к-рых-метронида-зол. [c.121]

    Наиболее удивительная особенность бактерий заключается в невероятно высокой скорости их обмена веществ и роста. В благоприятных условиях бактериальная клетка удваивает свои размеры и делится надвое всего за 20 мин. Животные клетки проходят этот цикл за 24 ч. Не меньшее удивление вызывает то, с какой скоростью бактерии превращают компоненты пищи в другие вещества. Высокую интенсивность обмена веществ у бактерий объясняют большим значением отношения поверхности к объему (см. также гл. 3, разд. А.5). Для мелких бактерий сферичесой формы (кокков) диаметром 0,5 мкм отношение поверхности к объему составляет 12-10 м , а у амебы диаметром 150 мкм это отношение равно всего 4-10 м >, но быстро возрастает, если амеба образует псевдоподии. У человека весом 90 кг, по оценкам Тимана [7], отношение поверхности к объему составляет только 30 м .  [c.22]

    К числу наиболее известных простейших, сходных с животными, относится амеба [подтип саркодовых (Sar odiiia), или корненожек (Rhi-zopoda)]. Самое удивительное у амебы (рис. 1-7) —это способ ее пере-.движения, который сопряжен с переходом цитоплазмы из жидкого со- стояния в полутвердый гель. При движении амебы цитоплазма в задней части клетки разжижается и перетекает в переднюю часть и в вытягивающиеся псевдоподии, где затем затвердевает по краям. Этот организм ставит перед биохимиками ряд принципиальных вопросов. Какова химическая природа обратимого перехода цитоплазмы из жидкого состояния в гель Какие химические процессы заставляют сократительные вакуоли [33] периодически выбрасывать избыток жидкости, т. е. -действовать наподобие зачаточной выделительной системы внутри от--дельной клетки Наконец, каким образом происходит быстрый разрыв и -восстановление клеточных мембран при заглатывании амебой частичек пищи  [c.43]

    Различную чувствительность к тяжелым металлам проявляют и почвенные простейшие, например раковинные амебы (А.С. Яковлев и др., 1985), водоросли (Э.А. Штина и др., 1984). На мифацию и аккумуляцию элементов оказывают влияние почвообитающие животные. Например термиты Средней Азии накапливают в своих телах более двух десятков химических элементов — хром, титан, никель, медь. Хорошим биоиндикатором промышленного зафязнения являются сапрофаги — диплоподы и дождевые черви, поглощающие значительные количества тяжелых металлов. [c.155]

    ЗОЛЯ. В амебах обнаружены пучкп тонких нитей, выделены ак-тино- и миозиноподобные белки. Можно думать, что за движение цитоплазмы ответственна система актомиозин — АТФ. [c.413]

    Митохондрии фигурируют во всех аэробных клетках животных и растений, за исключением некоторых примитивных бактерий, в которых функции митохондрий выполняет плазматическая мембрана. Число этих органоидов в клетке различно — от 20—24 в сперматозоидах до 500 ООО в клетке гигантской амебы haos haos. Число митохондрий характерно для клеток данного вида, по-видимому, прн митозе происходит деление митохондрий и их правильное расхождение в дочерние клетки. Во многих клетках митохондрии образуют непрерывную сеть — митохондриальный ретикулум. Форма, структура и размеры митохондрий также варьируют. Они всегда обладают системой внутренних мембран, именуемых кристами. На рис. 13.5 схематически изображена структура митохондрии кз печени крысы. Длина ее примерно [c.429]

    Огромна роль наших русских ученых в развитии микробиологии и биохимии. Общепризнанным основателем микробиологии в России считается Л. С. Ценковский (1822—1877). Его научная деятельность была посвящена главным образом исследованию низших организмов. Он показал, что большая часть простейших (инфузории, амебы) представляют собой организмы, состоящие из одной клетки. [c.487]

    Простейшие одноклеточные живые организмы, так называемые протозоа (протисты). К ним относятс амебы (корненожки) и различные инфузории. [c.489]

    Существует ряд важных одноклеточных эукариотических организмов. К ним относят все Protozoa (амебы, инфузории и др.), дрожжи, одноклеточные водоросли,— например, хлореЛла. Внутреннее устройство эукариотической клетки несравнимо сложнее, чем у поокариотов. Главные особенности этих структур будут [c.23]

    Оптимальное состояние почвы по показателю pH приводит к достижению оптимального для земледелия состояния микробного ценоза, который обычно состоит из бактерий, грибов и актиномицет. В контрольных — кислых почвах — как правило, находятся плесневые грибы. Бактерий при этом мало, и они представлены в основном одноклеточными амебами. Введение клиноптилолита, вызывающего изменение pH почвы, ведет к образованию миколитических бактерий, съедающих плесень. При этом также появляются амебы с размером 50-60 мкм, разрыхляющие почву и способствующие образованию в ней развитой пористой структуры. Формируется автохтонная микрофлора, представленная микроорганизмами, интенсифшщрующими разложение органических соединений. Введение клиноптилолита [c.406]

    Раствор Барбагалло. Он применяется для консервирования испражнений (3%-й раствор формалина в ИХН) 1 часть материала смешивают с 3 — 4 частями раствора, смесь хранят в плотно закрытой посуде. Цисты дизентерийной амебы сохраняются в этом растворе 2 нед, других простейших — многие годы, но при этом вышелачиваются гликогеновые вакуоли. Вегетативные формы простейших разрушаются раньше. [c.345]

    Дизентерийные амебы, балантидии, кишечные трихомонады, хиломастиксы легче выявить микроскопическими методами, чем при культивировании, однако при необходимости можно использовать и посев на питательные среды. [c.347]

    Среда Рейса МПБ (1 часть) смешивают с ИХН (4 части), стерилизуют, обогащают стерильной лошадиной или бычьей сывороткой (1 часть сыворотки на 10 — 15 частей среды) и разливают в пробирки по 8 — 10 мл. На этой среде хорошо растут балантидии, дизентерийные амебы, кишечные трихомонады. [c.348]

    Для заражения дизентерийными амебами и балантидиями используют 2 — 3-недельных крысят, морских свинок, котят, щенков, золотистых хомячков, для заражения лямблиями — мышей. При лейшманиозах заражают белых мышей и хомяков, при американском трипаносомозе — морских свинок, при африканском трипаносомозе — мартышек, при токсоплазмозе — белых мышей. [c.349]


АМЕБЫ - Энциклопедический словарь, Толковый словарь

АМЕБЫ - класс (или отряд) простейших надкласс корненожек. Размеры от 15-20 мкм до 1 мм и более. Большинство обитает в пресных водоемах, некоторые в почве; имеются паразитические формы, напр. дизентерийная амеба.

АМЕБЫ - одноклеточные организмы, характеризующиеся наличием псевдоподий (ложноножек), т.е. постоянно меняющих свою форму выпячиваний цитоплазмы, с помощью которых клетка передвигается и захватывает пищу. Амеб относят либо к классу корненожек (Rhizopoda, или Sarcodina) типа простейших (Protozoa) царства животных, либо к классу Rhizopoda типа Sarcodina царства протистов (Protista). Много видов амеб живет в пресной и соленой воде, во влажной почве и на растениях; некоторые амебы - паразиты животных, в том числе и человека.

АМЕБА - микроскопический одноклеточный организм, часто считающийся одной из простейших форм живого. Однако с физиологической точки зрения это достаточно сложная система. Показанному на рисунке виду Amoeba proteus свойственны, как и всем амебам, многие из функций, характерных для высших многоклеточных организмов, включая пищеварение, дыхание и выделение.

Кроме псевдоподий, из-за которых тело амебы не имеет определенной формы, для этих организмов характерно отсутствие жесткой оболочки клетки. Клетка окружена только особым молекулярным слоем, плазматической мембраной - составной частью живой цитоплазмы. Последняя подразделяется на тонкую поверхностную относительно однородную часть, называемую эктоплазмой, и лежащую в глубине зернистую эндоплазму. Та, в свою очередь, состоит из наружной студенистой зоны, плазмагеля, и внутреннего текучего плазмазоля. В эндоплазме находятся ядро, а также пищеварительные и сократительные вакуоли. Захваченная псевдоподиями пища, например бактерии, водоросли и простейшие, окружается пищеварительной вакуолью и в ней переваривается. Непереваренный материал выбрасывается из клетки при слиянии мембраны этой вакуоли с плазматической мембраной. Отходы метаболизма выделяются наружу путем простой диффузии. Определенная их часть, возможно, удаляется через сократительные вакуоли, но главная функция последних - выведение из клетки избытка воды. Они время от времени сокращаются, выталкивая ее наружу. Размножение у амеб бесполое - путем деления клетки надвое. Ядро при этом делится митотически, а затем цитоплазма перетягивается и распадается на две примерно одинаковые по объему части, содержащие по дочернему ядру. Две образовавшиеся клетки растут и в конечном итоге тоже делятся. Amoeba proteus - пресноводная амеба длиной ок. 0,25 мм, один из самых распространенных видов группы. Его часто используют в школьных опытах и для лабораторных исследований. Одна из самых крупных амеб - также пресноводный вид Pelomyxa (Chaos) carolinensis длиной 2-5 мм. Паразитический вид Entamoeba histolytica вызывает у человека амебную дизентерию (амебиаз).

Inter Research »AEI» v7 »n1» p67-74

Распределение возбудителя амебной жаберной болезни,

Neoparamoeba perurans , в садках с лососем

Дэниел У. Райт

1, *, Барбара Новак 2 , Фроде Оппедал 3 , Эндрю Брайдл 2 , Тим Демпстер 1

1 Лаборатория устойчивой аквакультуры - умеренный и тропический климат (SALTT), Школа биологических наук, Университет Мельбурна, Парквилл, Виктория 3010, Австралия
2 Институт морских и антарктических исследований, Университет Тасмании, Лонсестон, TAS 7250, Австралия
3 Институт морских исследований, 5984 Матредаль, Норвегия

РЕФЕРАТ: Определение того, где и когда паразиты встречаются в фермерских хозяйствах, жизненно важно для понимания динамики передачи и разработки профилактических мер, которые сокращают встречи паразитов с хозяином.Основную проблему паразитов для выращивания атлантического лосося представляет Neoparamoeba perurans , морская амеба, вызывающая потенциально смертельную амебную болезнь жабр (AGD), для которой существует несколько вариантов борьбы. Мы исследовали, различается ли численность свободноживущих N. perurans на разных глубинах промыслового атлантического лосося Salmo salar в садках. Пробы воды, собранные с поверхности на глубину до 10 м в нескольких садках и в разное время, а затем подвергнутые анализу qPCR, показали, что N.perurans зависела от глубины в то время года, когда численность амеб была наибольшей, а в поверхностных водах было больше амеб. При малой численности амеб не наблюдалось четкой картины глубины. Во все времена температура и соленость были в основном однородными на всей глубине садка. Обсуждаются возможные факторы, объясняющие наличие амеб на поверхности. Наши результаты показывают, что исключение лосося в клетке из верхней глубины клетки, где N. perurans более многочисленны, может быть эффективной стратегией управления для снижения скорости, с которой возникают первоначальные инфекции, и задержки развития вспышек AGD.

КЛЮЧЕВЫЕ СЛОВА: Борьба с паразитами · Атлантический лосось · Salmo salar · Neoparamoeba perurans · Распределение по глубине · Морские садки



Телесность и духовность в авангарде

Телесность и духовность в авангарде

ХХ век часто характеризуется множеством эстетических движений и общей для большинства из них риторикой новаторства.И все же многие фундаментальные различия между этими движениями можно понять с точки зрения различных точек зрения на довольно древнее различие между телом и душой. Гарри Партч говорит о телесности и о наименовании сила слова как антидот упрямого влияния «абстрактного идеал» в западной культуре. Василий Кандинский помещает духовное измерение искусства в пространство за пределами языка, референции и миметического представления. Среди философов Джон Дьюи и Мартин Хайдеггер стремятся сократить дистанцию ​​между разумом, телом и миром, растворяя барьер дуальности субъект / объект.Для многих художников авангардных движений начала 20-го века эти интересы находят свое отражение в художественных практиках, воплощающих осознанное движение от гегелевского идеализма к марксистскому материализму, движение от понятия искусства как выражения Совершенный идеал представления об искусстве как социальной критике. На этом семинаре мы рассмотрим эти вопросы, проследив исторические и философские истоки евро-американского авангарда.

Курс будет разделен на пять модулей:

Материальная история музыки - Тело и душа в классической метафизике - Горы - это Земля; Искусство бытия-в-мире - Политика разума и материи - Невыразимая ясность духа

Заданий:

Критические ответы [30%]

Вы несете ответственность за краткую критику или набор вопросов для каждой статьи.Они предназначены для стимулирования обсуждения и будут сдаваться в конце каждого урока (около 2 страниц). См. Ниже инструкции по подготовке ответов.

презентаций [35%] Каждой статье будет назначен респондент, который представит свой ответ в классе. Они должны быть более подробно проработаны, чем письменные ответы.

Заключительный документ / проект [35%]

Для финала будет два варианта: 15-страничная исследовательская работа или художественное произведение, которое соответствует текстам, которые мы будем задействовать вместе с более коротким теоретическим изложением (5-6 страниц).

——————————————

Материальная история музыки

Партч, Генезис музыки, часть 1

Тело и душа в классической метафизике

Стэнфордская энциклопедия философии статей:

Эстетика Платона:

http://plato.stanford.edu/entries/plato-aesthetics

Аристотель:

http://plato.stanford.edu/entries/aristotle

7.Четыре причины объяснительной адекватности, 8. Гиломорфизм, 9. Аристотелевская телеология, 13. Риторика и искусство

Психология Аристотеля:

http://plato.stanford.edu/entries/aristotle-psychology/#2

2. Гиломорфизм в целом, 3. Гиломорфные отношения души и тела: материализм, дуализм, Sui Generis ?, 7. Разум, 8. Желание

(исходные данные):

Платон, Республика: Книга X, Федр

Аристотель, Де Анима, Физика II, 3, Метафизика: V, 2, Поэтика: разделы 1-2 (I - XX)

Горы - это Земля; Искусство бытия-в-мире

Дьюи, Искусство как опыт, главы 1 и 5

Уилшир, Основные корни американской философии: прагматизм, феноменология и мышление коренных американцев, предисловие, глава 12

(фоновое чтение):

Стэнфордская энциклопедия философии, статья об эстетике Дьюи:

http: // plato.stanford.edu/entries/dewey-aesthetics

Политика разума и материи

Бюргер, Теория авангарда (избранные)

Пример I: Клетка

Клетка, экспериментальная музыка: ДОКТРИНА

Эко, Поэтика открытого произведения

Найман, К определению экспериментальной музыки

Тарускин, Музыкальный слух отсутствует: пугающая чистота Джона Кейджа

Невыразимая ясность духа

Кандинский, О духовном в искусстве

Кобассен, Музыка и духовность: 13 медитаций вокруг Черных ангелов Крамба

(фоновое чтение):

Стэнфордская энциклопедия философии статей:

Делёз (Разделы 3-5)

http: // plato.stanford.edu/entries/deleuze

Деррида (5. Деконструкция):

http://plato.stanford.edu/entries/derrida/#Dec

Пример использования II: Харви

Харви, In Quest of Spirit: Мысли о музыке (необязательно)

Финальная неделя: презентации

Смерть мальчика от амебы, поедающей мозги, вызывает предупреждение округа Бразориа

ЛЕЙК ДЖЕКСОН - Около месяца назад Джозия Макинтайр заболел. Сначала жар, головные боли и рвота.Состояние 6-летнего ребенка постепенно ухудшалось. Через несколько дней он был помещен в отделение интенсивной терапии Детской больницы Техаса. Его проверили на стрептококк, COVID-19 - все, что могли придумать врачи, но не было никаких объяснений.

К тому времени, когда врачи поняли, что он заболел амебой, поедающей мозг, было уже слишком поздно, сказали его родственники. Умер 8 сентября.

.

Бабушка и дедушка мальчика предполагают, что он вдохнул воду из городского водопровода на водяной бане, которую они посетили незадолго до того, как он заболел.Они не могут быть уверены в этом, но они призвали несколько агентств проверить воду.

«Мы просто хотим, чтобы люди знали, что это где-то там», - сказала его бабушка Натали Макинтайр на мероприятии по сбору средств для всей семьи в субботу днем. «Если вы подверглись воздействию или, возможно, подверглись воздействию и у вас возникнут эти симптомы, обратитесь в больницу и сообщите об этом кому-нибудь».

Его смерть стала поводом для тестирования воды, в результате чего в пятницу поздно вечером жители округа Бразория получили поразительное предупреждение: не используйте воду, потому что она может содержать амебу, поедающую мозг.Согласно пресс-релизу, выпущенному в субботу, Управление водного хозяйства Бразоспорта отменило рекомендацию «не использовать» позже во всех областях, кроме озера Джексон.

«После обширных переговоров с Комиссией Техаса по качеству окружающей среды, а также обеспечения того, что Управление водного хозяйства Бразоспорта имеет достаточный остаток дезинфицирующего средства, было принято решение об отсутствии проблем с безопасностью для системы распределения BWA», - говорится в сообщении.

Жительница

Норма Сантойо проснулась в субботу от странного сообщения от городских властей: она не могла приготовить кофе или завтрак, и определенно не могла принять душ, поэтому она направилась в Walmart, чтобы купить воды.

«Я боюсь этого больше, чем COVID», - сказала Сантойо, загружая бутылки в свой пикап. «Какой отличный год, 2020 год».

Неподалеку Роберт Мендоза подтолкнул тележку с 80 бутылками воды и пустым 5-галлонным кувшином для воды. Он планирует поехать в Хьюстон, чтобы наполнить гигантскую бутылку.

Он все еще был на работе допоздна в пятницу, когда друг услышал о рекомендации по воде, выпущенной в 21:30. в том числе Lake Jackson, Freeport, Angleton, Brazoria, Richwood, Oyster Creek, Clute, Rosenberg, Dow Chemical, TDCJ Clemens и TDCJ Wayne Scott.

«Я не думал, что это так важно, - сказал он.

Но утром он прочитал отчет о консультативном и пересмотрел.

«Сегодня я принял меры, чтобы вообще не промокнуть», - сказал Мендоза.

Изначально рекомендация была выпущена для всех областей «из соображений осторожности». Согласно сообщению, TCEQ и Управление водного хозяйства Бразоспорта работают с официальными лицами озера Джексон, чтобы решить эту проблему.

По данным Центров США по контролю и профилактике заболеваний, вода загрязнена naegleria fowleri, свободноживущей микроскопической амебой или одноклеточным живым организмом, обычно встречающимся в теплой пресной воде и почве. Обычно он заражает людей, когда загрязненная вода попадает в организм через нос, откуда она попадает в мозг, и может вызвать редкое и изнурительное заболевание, называемое первичным амебным менингоэнцефалитом.

Инфекция обычно заканчивается смертельным исходом и обычно возникает, когда люди плавают или ныряют в теплых пресноводных местах, таких как озера и реки.

Brazosport ISD заявили, что объявят в воскресенье, если какие-либо школы на озере Джексон будут закрыты в понедельник из-за рекомендаций по водным ресурсам.

«Пожалуйста, знайте, что безопасность наших учащихся и сотрудников остается главным приоритетом для всех решений, принимаемых округом», - написал округ в своем сообщении в Twitter.

Kroger также отправляет 250 поддонов воды в местные магазины в Клюте, Розенберге и Энглтоне из-за рекомендаций по водным ресурсам, по словам ее менеджера по корпоративным связям Клары Кэмпбелл.

В редких случаях инфекции наэглерии также могут возникать, когда в нос попадает зараженная вода из других источников (например, недостаточно хлорированная вода в плавательном бассейне или нагретая и загрязненная водопроводная вода).

Загрязнение микробами систем водоснабжения, очищенных в США, встречается редко, но нередко. Согласно веб-сайту CDC, первые случаи смерти от naegleria fowleri, обнаруженные в водопроводной воде из очищенных общественных систем питьевого водоснабжения США, произошли на юге Луизианы в 2011 и 2013 годах.

Этот микроб также был обнаружен в 2003 году в неочищенной геотермальной системе питьевой воды в Аризоне, а также в дезинфицированных источниках питьевой воды в Австралии в 1970-х и 1980-х годах и в 2008 году в Пакистане.

Карлос Гранадос, который живет в Клюте, был среди счастливчиков, чья рекомендация была отменена во второй половине дня, но не раньше, чем его планам захватить Whataburger помешали, потому что он был закрыт, сказал он. Как и Макдональдс.

«Я этого не испытывал», - сказал он.«Я даже не слышал об этом».

Между тем родственники помнили Иосию как миротворца, который отказывался исключать других. Он любил свою семью, свою собаку, Уинстона и бейсбол.

Ему нравилось проводить время на открытом воздухе, независимо от того, играл ли он в прятки, делал порезы в клетке своего дедушки или играл в мяч с отцом и дядями.

Его любовь к Астросу также была глубокой. Когда люди спрашивали его, как его зовут, он добавлял Карлоса Корреа в конце.

В тот же день, когда он умер, Корреа отправил семье видео, в котором сетовал, что у него никогда не было возможности встретиться с мальчиком или обнять его.

«Я знаю, что он наблюдает за всеми нами прямо сейчас», - сказал Корреа в видео, копия которого была у его бабушки на телефоне, также пользуясь услугами семьи. "Я буду держать вас в своих молитвах".

Его дед, Рэй, называвший его Джо-Джо, вспоминал мальчика как счастливого, ласкового ребенка, который помнит о других.

Среди его последних слов перед тем, как он перестал выступать в отделении интенсивной терапии, было сообщение матери, что он любит ее. Он рассказал о своем другом дедушке, который уже умер, и о своей собаке.

Персонал больницы позволил нескольким родственникам увидеться с ним в последние минуты его жизни.

С тех пор его мать сказала, что держится там, «все еще пытаясь осмыслить все это».

Но она уже знает, что будет скучать по объятиям своего мальчика.

«Каждый раз, когда я входила в дверь, это была одна и та же улыбка, одно и то же объятие», - сказала 28-летняя Мария Кастильо о своем первенце.

«Я очень по тебе скучал. Я так счастлив, что ты дома, - говорил он ей.

Этот отчет содержит материалы Associated Press.

Prometheus ARES AMOEBA EFCS Настраиваемый регулируемый триггер

Созданный для серии винтовок Ares Amoeba EFCS, этот новый настраиваемый спусковой механизм имеет широкие возможности регулировки и значительно улучшает реакцию на спусковой крючок.Используя два установочных винта, вы можете регулировать как длину нажатия спускового крючка или его реакцию, так и ход / угол спускового крючка. Ход можно отрегулировать снаружи коробки передач в любое время, в то время как регулировка усилия спускового крючка производится во время установки. Это значительно упрощает настройку спускового крючка вашей винтовки по своему вкусу. Зазубренная прямая спусковая площадка также обеспечивает максимальный захват и быстрый полуавтоматический огонь.

  • Полностью регулируемая длина нажатия на спусковой крючок и реакция на спусковой крючок
  • Рифленый прямой спусковой крючок для облегчения захвата и быстрого полуавтоматического огня
  • Материал: алюминиевый сплав


Указания по установке

  1. Чтобы установить и отрегулировать длину отклика и хода, сначала ослабьте установочный винт A, а затем установите его в коробку передач.Постепенно отрегулируйте установочный винт A до желаемого срабатывания срабатывания между установочным винтом A и пусковым переключателем. (ВНИМАНИЕ: перед полной сборкой коробки передач проверьте, сработал ли предохранительный механизм. Если вы слишком сильно сократите время срабатывания спускового крючка, предохранитель перестанет работать.)
  2. После того, как коробка передач будет собрана и помещена обратно в приемник Ares Amoeba, отрегулируйте установочный винт B, чтобы отрегулировать угол / ход спускового крючка. Есть небольшое отверстие для винта, доступ к которому можно получить с помощью шестигранного ключа снаружи коробки передач, когда коробка передач установлена.(ВНИМАНИЕ: Чрезмерная затяжка установочного винта B может помешать спусковому крючку сработать или полностью освободить спусковой переключатель.)

※ Г-образный шестигранный ключ (1,27 мм) необходим для регулировки хода спускового крючка снаружи коробки передач.
※ Рекомендуется использовать резьбовой фиксатор средней прочности, чтобы регулировочные винты не ослабли.
※ Вы можете использовать набор регулировочных шайб для дополнительной регулировки по горизонтали и уменьшения люфта спускового крючка.

■ ВНИМАНИЕ:
※ Представленное изображение является образцом продукта, фактический цвет и технические характеристики могут отличаться.
※ Пистолет и другие детали продаются отдельно.
※ Цвет может отличаться от партии к партии.

находок с воды с ранчо Ласатер, день 43 Page 1

находок с воды с ранчо Ласатер, день 43 Page 1

jj

Сюда включены VIDCAPS и видео с образца воды с ранчо Ласатер на сорок третий день! Я снимал несколько кадров и обнаружил, что вторая фотографическая экипировка Expomet для моей системы Jena Val тоже не работает! Что же делать с оборудованием восточно-германской компании, которое Западная Германия купила и закрыла после падения стены - Итак, мне сказали !! В любом случае, я видел огромную пульсирующую сердитую плоть в чем-то похожем на клетку! К тому времени, как я установил камеру Panasonic, масса плоти лопнула, и клетка стала больше походить на останки мертвого насекомого, части тела которого лежали разбросанными по местности !! Позже я как раз исследовал образец воды Ласатер, чтобы посмотреть, что там было в день сорок третий! Я снова увидел массовое возмущение пульсирующей плоти! У меня были только сомнительные слайды и пластиковые покровные листы - биологические запасы Каролины, где ты; но решил подключить камеру и снимать!


После того, как я подключился к камере, я обнаружил, что массивный кусок Outraged Flesh был намного меньше Очевидно, он вырос из нескольких более мелких модулей, таких как Pic !! Первоначальный организм находился в плотном слое, поэтому его было трудно изучить очень внимательно! На втором слайде я наблюдал эту довольно крупную инфузорию! Откровенно говоря, я понятия не имею об идентичности этих организмов! В этом более крупном втором организме крупный план показал множество обычных подозреваемых, проглоченных организмами Pic, Pic и Pic! У этого второго крупного организма не было выступающих выступов, которые дали отпочкование новым организмам! Я также заметил большую Amoeba Pic! Эта Amoeba не совсем выглядела или действовала как A.proteus , поэтому я не совсем уверен в его подлинности! Например, эта Amoeba , казалось, прикрепляла одну сторону плазмалеммы псевдопод к субстрату, так что текущая гранулированная эндоплазма заставляла Amoeba двигаться в новом направлении! Очень похоже на танк крутится! По крайней мере, я не помню такого поведения в A. proteus ! Конечно, я мог бы ошибиться в этом!


VIDCAPS с дня сорок третьего из пробы воды с ранчо Ласатер !!



Фильмы QuickTime за день сорок третий из проб воды с ранчо Ласатер !!!


Amoeba Стриминг медленно!

Масса распускающейся скручивающейся плоти !!

Крупный план потоковой передачи Amoeba !!

Большая инфузория в порции 1 - Biggie !!

Большая ресничка в движении 2 - пульсирующее движение !!

Крупный план большой инфузории !!

Euchlanis Коловратка и актиноподея типа !!!

Амеба в движении! Первая часть показывает Amoeba , заставляющую свое тело двигаться в новом направлении !!!

Больше Streaming Amoeba !!

Вернитесь на страницу съемки ранчо Ласатер !!

Вернуться на главную страницу простейших !!

Это производство Wolfbat359 !!!

Последнее обновление этой страницы: 3 октября 2004 г.

Роль амеб в выживании и восстановлении «некультивируемых» клеток Helicobacter pylori в водной среде., FEMS Microbiology Ecology

Helicobacter pylori - привередливая грамотрицательная бактерия, поражающая более половины населения мира, вызывая хронический гастрит и являясь фактором риска рака желудка.В развивающихся и сельских регионах, где уровень распространенности превышает 60%, стойкость и передача через воду часто связаны с плохими санитарными условиями. Здесь мы демонстрируем, что H. pylori не только выживает, но и реплицируется в подкисленных свободноживущих амебных фагосомах. Количество бактерий в клиническом изоляте H. pylori G27 увеличилось более чем в 50 раз после трех дней совместного культивирования с амебами. Напротив, мутант H. pylori , дефицитный по гену cagPAI ( cagE ), показал небольшой рост внутри амеб, что свидетельствует о вероятной важности системы секреции типа IV у H.pylori для амебной инфекции. Мы также демонстрируем, что H. pylori может быть упаковано амебами и высвобождено во внеклеточные везикулы. Кроме того, и впервые мы успешно продемонстрировали способность двух свободноживущих амеб возвращаться и восстанавливать жизнеспособный, но не культивируемый коккоид (VBNC) - H. pylori до состояния культивирования. Наши исследования предоставляют доказательства, подтверждающие гипотезу о том, что амебы и, возможно, другие свободноживущие простейшие вносят вклад в репликацию и сохранение патогенного человека H.pylori , обеспечивая защищенную внутриклеточную микросреду для этого патогена, чтобы он сохранялся в естественных водных средах и инженерных водных системах, таким образом, H. pylori потенциально использует амебу в качестве носителя и вектора передачи.

中文 翻译 :


变形虫 在 水 生 环境 中 对 «不可 培养 的» 幽门螺杆菌 细胞 存活 和 恢复 的 作用。

幽门螺杆菌 是 一种 革兰氏阴性 细菌 , 可 感染 世界 一半 以上 的 人口 , 引起 慢性 胃炎 是 胃癌 的 危险 因素。 在 患病 率 60 的 发展 中 和 持久 性 和 水通常 与 不良 的 卫生 有关。 在 这里 , 幽门螺杆菌 不仅 , 酸化 的 自由 生活 的 阿米巴 吞噬 的 中 复制。 与 变形虫 共 三天 后 , 临床 分离 株 幽门 G27 的 细菌 计数 增加 了 50 以上 相反 , cagPAI 基因 的 幽门螺杆菌 cagE ) 变形虫 内 几乎 没有 生长 IV 型 系统虫 感染 的 重要性。 我们 还 证明 了 幽门螺杆菌 可以 被 变形虫 包装 并 在 细胞 中 释放。 此外 , 而且 这 是 的 成功 地 证明 两个 自由 活动 的 变形虫能够 将 存活 但 不可 培养 的 球菌 (VBNC) - 幽门螺杆菌 还原 并 恢复 到 可 状态。 我们 的 研究 提供 证据 : 变形虫 和 其他 有助于 人类 致病 性 幽门螺杆菌 的 复制 和 持久 性 通过 为该 病原 体 提供 受 的 的 细胞 微 环境 , 使其 在 自然水 生 水 中 持久 幽门螺杆菌 潜在 地 利用变形虫 作为 载体 和 传播 媒介。

Пять новых видов диктиостелидных социальных амеб (Amoebozoa) из Таиланда | BMC Ecology and Evolution

Cavenderia aureostabilis (Th20B). a Обильная крупнопоточная излучающая агрегация с тонкими струйками, отдельно, несколько кустистых струй (слева), более мелкие агрегаты с более короткими лопастными струйками (справа). b Ранние высоко мигрирующие сорогены, оставляющие следы клеток и слизи, самый высокий с образованием стебля на конце (вверху слева направо), одиночный поздний сороген с дисковым основанием и следами ранних потоков (немигрирующие, внизу слева), ранний поздний сороген, который меняет направление при миграции, становится очень удлиненным (внизу, справа). c Поздний раздвоенный сороген с широким конусом на колоколообразном основании диска (слева), два молодых маленьких сорокарпа, разделяющие основание диска (справа). d Два скопления обрушившихся сорокарпов, один продолжает столбоносную миграцию, а другой нет (слева), сначала тонкие, чтобы плетение одиночных неразветвленных сорокарпий, хорошо направленных (в центре, слева), общий столононосный вид позднего сорогена (в центре), два одиночные неразветвленные зрелые сорокарпы, один из которых сваливается и восстанавливается, другой изгибается и плетется при старении (справа). e Круглое основание внутри плотного конуса до колоколообразной регулярной матрицы слизи, которая заканчивается расширенным выступающим и правильным диском, подушка дифференциальной слизи под основанием прикреплена к субстрату тонкими незаметными волокнами оболочки, диск постепенно заполнен небольшими многоугольными ячейками, покрывающими всю массу тела (слева), булавовидное основание с выступающей ячейкой, диск опущен (в центре), короткоцилиндровое основание внутри структуры слизи в форме колокола или диска (справа). f Простой одноклеточный кончик, содержащий массу довольно недифференцированных клеток и слизи (вверху), простой изогнутый кончик с обильной плотной слизью (в центре), изогнутый многоклеточный кончик, все концевые клетки маленькие. г Большие узкие эллиптические споры с неправильными крупными консолидированными PG, присутствуют ореолы, с вакуолями и рассредоточенными мелкими гранулами, клетка для спор (внизу, справа). h Myxamoeba с множественными мелко-средними вакуолями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *